Ivermectin: enigmatic multifaceted ‘wonder’ drug continues to surprise and exceed expectations (2024)

References

  1. Campbell, W. C., Fisher, M. H., Stapley, E. O., Albers-Schönberg, G. & Jacob, T. A. Ivermectin: a potent antiparasitic agent. Science 221, 823–828 (1983).

    Article CAS PubMed Google Scholar

  2. Campbell, W. C. Ivermectin: an update. Parasitol. Today 1, 10–16 (1985).

    Article CAS PubMed Google Scholar

  3. Campbell, W. C. Ivermectin and Abamectin 325 (Springer-Verlag, New York, 989).

  4. Campbell, W. C. Use of Ivermectin in Humans 311–323 (Springer-Verlag, New York, 1989).

  5. Campbell, W. C. Ivermectin as an antiparasitic agent for use in humans. Ann. Rev. Microbiol. 45, 445–474 (1991).

    Article CAS Google Scholar

  6. Campbell, W. C. in Inventive Mindseds (eds Weber R. J. & Perkins D. N.) 194–214 (Oxford University Press, New York, 1992).

  7. Ōmura, S . & Crump, A. The life and times of ivermectin-a success story. Nat. Rev. Microbiol. 2, 984–989 (2004).

    Article PubMed CAS Google Scholar

  8. Geary, T. G. Ivermectin 20 years on: maturation of a wonder drug. Trends Parasitol. 21, 530–532 (2005).

    Article CAS PubMed Google Scholar

  9. Ōmura, S. Ivermectin: 25 years and still going strong. Int. J. Antimicrob. Agents 31, 91–98 (2008).

    Article CAS PubMed Google Scholar

  10. Campbell, W. C. History of avermectin and ivermectin, with notes on the history of other macrocyclic lactone antiparasitic agents. Curr. Pharm. Biotechnol. 13, 853–865 (2012).

    Article CAS PubMed Google Scholar

  11. Crump, A. & Ōmura, S. Ivermectin, ‘wonder drug’ from Japan: the human use perspective. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 87, 13–28 (2011).

    Article CAS PubMed PubMed Central Google Scholar

  12. Crump, A., Morel, C. M. & Ōmura, S. The onchocerciasis chronicle: from the beginning to the end? Trends Parasitol. 28, 280–288 (2012).

    Article PubMed Google Scholar

  13. Ōmura, S . & Crump, A. Ivermectin: panacea for resource-poor communities? Trends Parasitol. 30, 445–455 (2014).

    Article PubMed Google Scholar

  14. Ōmura, S. Nobel lecture: a splendid gift from the Earth: the origins and impact of the avermectins. Angew. Chem. Int. Ed. Engl. 55, 10190–10209 (2016).

    Article PubMed CAS Google Scholar

  15. Burg, R. W. et al. Avermectins, new family of potent anthelmintic agents: producing organisms and fermentation. Antimicrob. Agents Chemother. 15, 361–367 (1979).

    Article CAS PubMed PubMed Central Google Scholar

  16. Miller, T. W. et al. Avermectins, new family of potent anthelmintic agents: isolation and chromatographic properties. Antimicrob. Agents Chemother. 15, 368–371 (1979).

    Article CAS PubMed PubMed Central Google Scholar

  17. Egerton, J. R. et al. Avermectins, new family of potent anthelmintic agents: efficacy of the B1A component. Antimicrob. Agents Chemother. 15, 372–378 (1979).

    Article CAS PubMed PubMed Central Google Scholar

  18. World Health Organization. Onchocerciasis and its control report of a WHO Expert Committee on Onchocerciasis Control (WHO/TRS/852) 104, http://apps.who.int/iris/bitstream/10665/37346/1/WHO_TRS_852.pdf (World Health Organization, Geneva, 1995).

  19. Zoure, H. G. et al. The geographic distribution of onchocerciasis in the 20 participating countries of the African Programme for Onchocerciasis Control: (2) pre-control endemicity levels and estimated number infected. Parasit. Vectors 7, 325 (2014).

    Article PubMed PubMed Central Google Scholar

  20. Remme, J. H. F. The African Programme for Onchocerciasis Control: preparing to launch. Trends Parasitol. 11, 403–406 (1995).

    Google Scholar

  21. Coffeng, L. E. et al. African Programme for Onchocerciasis Control 1995-2015: updated health impact estimates based on new disability weights. PLoS Negl. Trop. Dis 8, e2759 (2014).

    Article PubMed PubMed Central Google Scholar

  22. World Health Organization Progress report on the elimination of human onchocerciasis, 2015-2016. Wkly Epidemiol. Rec. 91, 505–514 (2016).

    Google Scholar

  23. Tekle, A. H. et al. Progress towards onchocerciasis elimination in the participating countries of the African Programme for Onchocerciasis Control: epidemiological evaluation results. Infect. Dis. Poverty 5, 66 (2016).

    Article PubMed PubMed Central Google Scholar

  24. Kim, Y. E. et al. Control, elimination and eradication of river blindness: scenarios, timelines, and ivermectin treatment needs in Africa. PLoS Negl. Trop. Dis. 9, e0003664 (2015).

    Article PubMed PubMed Central CAS Google Scholar

  25. World Health Organization Global programme to eliminate lymphatic filariasis: progress report 2015. Wkly Epidemiol. Rec. 91, 441–455 (2016).

    Google Scholar

  26. Mectizan Donation Program. Annual Highlights: 2015 8 (Mectizan Donation Programme, Atlanta, Georgia, 2016).

  27. Krotneva, S. P. et al. African Program for Onchocerciasis Control 1995-2010: impact of annual ivermectin mass treatment on Off-Target infectious diseases. PLoS Negl. Trop. Dis. 9, e0004051 (2015).

    Article PubMed PubMed Central Google Scholar

  28. van Wyk, J. A. & Malan, F. S. Resistance of field strains of Haemonchus contortus to ivermectin, closantel, rafoxanide and the benzimidazoles in South Africa. Vet. Record 123, 226–228 (1988).

    Article CAS PubMed Google Scholar

  29. Horsberg, T. E. Avermectin use in aquaculture. Curr. Pharm. Biotechnol. 13, 1095–1102 (2012).

    Article CAS PubMed Google Scholar

  30. Basanez, M. G. et al. Effect of single-dose ivermectin on Onchocerca volvulus: a systematic review and meta-analysis. Lancet Infect. Dis. 8, 310–322 (2008).

    Article CAS PubMed Google Scholar

  31. Taylor, M. J., ho*rauf, A. & Bockarie, M. Lymphatic filariasis and onchocerciasis. Lancet 376, 1175–1185 (2010).

    Article PubMed Google Scholar

  32. Fink, D. W. & Porras, A. G. in Ivermectin and Abamectin (ed. Campbell W. C.) 113–130 (Springer-Verlag, New York, 1989).

  33. Baraka, O. Z. et al. Ivermectin distribution in the plasma and tissues of patients infected with Onchocerca volvulus. Eur. J. Clin. Pharmacol. 50, 407–410 (1996).

    Article CAS PubMed Google Scholar

  34. González Canga, A. et al. The pharmaco*kinetics and interactions of ivermectin in humans-a mini-review. AAPS J. 10, 42–46 (2008).

    Article PubMed PubMed Central CAS Google Scholar

  35. Brown, D. D. R., Siddiqui, S. Z., Kaji, M. D. & Forrester, S. G. Pharmacological characterization of the Haemonchus contortus GABA-gated chloride channel, Hco-UNC-49: modulation by macrocyclic lactone anthelmintics and a receptor for piperazine. Vet. Parasitol. 185, 201–209 (2012).

    Article CAS PubMed Google Scholar

  36. Zheng, Y. et al. Identification of two novel Drosophila melanogaster histamine-gated chloride channel subunits expressed in the eye. J. Biol. Chem. 277, 2000–2005 (2002).

    Article CAS PubMed Google Scholar

  37. Schnizler, K. et al. A novel chloride channel in Drosophila melanogaster is inhibited by protons. J. Biol. Chem. 280, 16254–16262 (2005).

    Article CAS PubMed Google Scholar

  38. Li, B. W., Rush, A. C. & Weil, G. J. High level expression of a glutamate-gated chloride channel gene in reproductive tissues of Brugia malayi may explain the sterilizing effect of ivermectin on filarial worms. Int. J. Parasitol. Drugs Drug Resist 4, 71–76 (2014).

    Article PubMed PubMed Central Google Scholar

  39. Ballesteros, C. et al. The effects of ivermectin on Brugia malayi females in vitro: a transcriptomic approach. PLoS Negl. Trop. Dis. 10, e0004929 (2016).

    Article PubMed PubMed Central CAS Google Scholar

  40. Moreno, Y., Nabhan, J. F., Solomon, J., Mackenzie, C. D. & Geary, T. G. Ivermectin disrupts the function of the excretory-secretory apparatus in microfilariae of Brugia malayi. Proc. Natl Acad. Sci. USA 107, 20120–20125 (2010).

    Article CAS PubMed PubMed Central Google Scholar

  41. Wolstenholme, A. J., Maclean, M. J., Coates, R., McCoy, C. J. & Reaves, B. J. How do the macrocyclic lactones kill filarial nematode larvae? Invert. Neurosci 16, 7 (2016).

    Article PubMed PubMed Central Google Scholar

  42. Kwarteng, A., Terkoper Ahuno, S. & Osei Akoto, F. Killing filarial nematode parasites: role of treatment options and host immune response. Infect. Dis. Pov. 5, 86 (2016).

    Article Google Scholar

  43. Higazi, T. B., Geary, T. G. & Mackenzie, C. D. Chemotherapy in the treatment, control, and elimination of human onchocerciasis. Res. Rep. Trop. Med. 5, 77–93 (2014).

    Article PubMed PubMed Central Google Scholar

  44. Hewitson, J. P., Grainger, J. R. & Maizels, R. M. helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity. Mol. Biochem. Parasitol. 167, 1–11 (2009).

    Article CAS PubMed PubMed Central Google Scholar

  45. Maizels, R. M., Hewitson, J. P. & Smith, K. A. Susceptibility and immunity to helminth parasites. Curr. Opin. Immunol. 24, 459–466 (2012).

    Article CAS PubMed PubMed Central Google Scholar

  46. MacDonald, A. J. et al. Differential cytokine and antibody responses to adult and larval stages of Onchocerca volvulus consistent with the development of concomitant immunity. Infect. Immun. 70, 2796–2804 (2002).

    Article CAS PubMed PubMed Central Google Scholar

  47. Ali, M. M. et al. Immunocompetence may be important in the effectiveness of Mectizan (ivermectin) in the treatment of human onchocerciasis. Acta Trop. 84, 49–53 (2002).

    Article CAS PubMed Google Scholar

  48. Brattig, N. W. Pathogenesis and host responses in human onchocerciasis: impact of Onchocerca filariae and Wolbachia endobacteria. Microbes Infect. 6, 113–128 (2004).

    Article CAS PubMed Google Scholar

  49. Dzik, J. M. Molecules released by helminth parasites involved in host colonization. Acta Biochim. Pol 53, 33–64 (2006).

    CAS PubMed Google Scholar

  50. Kircik, L. H., Del Rosso, J. Q., Layton, A. M. & Schauber, J. Over 25 years of clinical experience with ivermectin: an overview of safety for an increasing number of indications. J. Drugs Dermatol. 15, 325–332 (2016).

    PubMed Google Scholar

  51. Shinohara, E. H., Martini, M. Z., de Oliveira Neto, H. G. & Takahashi, A. Oral myiasis treated with ivermectin: case report. Braz. Dent. J. 15, 79–81 (2004).

    Article PubMed Google Scholar

  52. Pandey, T. R., Shrestha, G. B., Kharel (Sitaula), R. & Shah, D. N. A case of orbital myiasis in recurrent eyelid basal cell carcinoma invasive into the orbit. Case Rep Ophthalmol. Med. 2904346, 4 http://dx.doi.org/10.1155/2016/2904346 (2016).

  53. Basyoni, M. M. & El-Sabaa, A. A. Therapeutic potential of myrrh and ivermectin against experimental Trichinella spiralis infection in mice. Korean J. Parasitol. 51, 297–304 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  54. Strong, L. & Brown, T. A. Avermectins in insect control and biology: a review. Bull. Entomol. Res. 77, 357–389 (1987).

    Article CAS Google Scholar

  55. Jackson, H. C. Ivermectin as a systemic insecticide. Parasitol. Today 5, 146–156 (1989).

    Article CAS PubMed Google Scholar

  56. Tesh, R. B. & Guzman, H. Mortality and infertility in adult mosquitoes after the ingestion of blood containing ivermectin. Am. J. Trop. Med. Hyg. 43, 229–233 (1990).

    Article CAS PubMed Google Scholar

  57. Chaccour, C., Lines, J. & Whitty, C. J. M. Effect of ivermectin on Anopheles gambiae mosquitoes fed on humans; the potential of oral insecticides in malaria control. J. Infect. Dis. 202, 113–116 (2010).

    Article PubMed Google Scholar

  58. Kobylinski, K. C. et al. The effect of oral anthelmintics on the survivorship and re-feeding frequency of anthropophilic mosquito disease vectors. Acta Trop. 116, 119–126 (2010).

    Article CAS PubMed PubMed Central Google Scholar

  59. Kobylinski, K. C., Sylla, M., Chapman, P. L., Sarr, M. D. & Foy, B. D. Ivermectin mass drug administration for humans disrupts malaria parasite transmission in Senegalese villages. Am. J. Trop. Med. Hyg. 85, 3–5 (2011).

    Article CAS PubMed PubMed Central Google Scholar

  60. Panchal, M. et al. Plasmodium falciparum signal recognition particle components and anti-parasitic effect of ivermectin in blocking nucleo-cytoplasmic shuttling of SRP. Cell Death Dis. 16, e994 (2014).

    Article CAS Google Scholar

  61. Foy, B. D., Kobylinski, K. C., da Silva, I. M., Rasgon, J. L. & Sylla, M. Endectocides for malaria control. Trends Parasitol. 27, 423–428 (2011).

    Article CAS PubMed PubMed Central Google Scholar

  62. Chaccour, C. J. et al. Establishment of the ivermectin research for malaria elimination network: updating the research agenda. Malar. J. 14, 243 (2015).

    Article PubMed PubMed Central CAS Google Scholar

  63. Mascari, T. M., Mitchell, M. A., Rowton, E. D. & Foil, L. D. Ivermectin as a rodent feed-through insecticide for control of immature sand flies (Diptera: Psychodidae). J. Am. Mosq. Control Assoc. 24, 323–326 (2008).

    Article CAS PubMed Google Scholar

  64. Kadir, M. A., Aswad, H. S., Al-Samarai, A. M. & Al-Mula, G. A. Comparison between the efficacy of ivermectin and other drugs in treatment of cutaneous leishmaniasis. Iraqi J. Vet. Sci. 23 (Suppl II), 175–180 (2009).

    Google Scholar

  65. Hanafi, H. A. et al. Effects of ivermectin on blood-feeding Phlebotomus papatasi and the promastigote stage of Leishmania major. Vector Borne Zoonotic Dis 11, 43–52 (2011).

    Article PubMed Google Scholar

  66. Rasheid, K. A. & Morsy, T. A. Efficacy of ivermectin on the infectivity of Leishmania major promastigotes. J. Egypt Soc. Parasitol. 28, 207–212 (1998).

    CAS PubMed Google Scholar

  67. Opara, W. E. K. & Ameh, I. G. Cutaneous leishmaniasis: a report of its treatment with Mectizan in Sokoto, Nigeria. J. Med. Sci. 5, 186–188 (2005).

    Article Google Scholar

  68. Distelmans, W., D’Haeseleer, F. & Mortelmans, J. Efficacy of systemic administration of ivermectin against tsetse flies. Ann. Soc. Belg. Med. Trop. 83, 119–125 (1983).

    Google Scholar

  69. Pooda, S. H., Mouline, K., De Meeûs, T., Bengaly, Z. & Solano, P. Decrease in survival and fecundity of Glossina palpalis gambiensis vanderplank 1949 (Diptera; Glossinidae) fed on cattle treated with single doses of ivermectin. Parasit. Vectors 6, 165 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  70. Udensi, U. K. & fa*gbenro-Beyioku, A. F. Effect of ivermectin on Trypanosoma brucei brucei in experimentally infected mice. J. Vector Borne Dis. 49, 143–150 (2012).

    PubMed Google Scholar

  71. Pinto Dias, J. C. et al. Ticks, ivermectin and experimental Chagas disease. Mem. Inst. Oswaldo Cruz 100, 829–832 (2005).

    Article Google Scholar

  72. Fallon, P. G. & Doenhoff, M. J. Drug-resistant schistosomiasis: resistance to praziquantel and oxamniquine induced in Schistosoma mansoni in mice is drug specific. Am. J. Trop. Med. Hyg. 51, 83–88 (1994).

    Article CAS PubMed Google Scholar

  73. Ismail, M. et al. Resistance to praziquantel: direct evidence from Schistosoma mansoni isolated from Egyptian villagers. Am. J. Trop. Med. Hyg. 60, 932–935 (1999).

    Article CAS PubMed Google Scholar

  74. Mendoncla-Silva, D. L., Pessôa, R. F. & Noël, F. Evidence for the presence of glutamatergic receptors in adult Schistosoma mansoni. Biochem. Pharmacol 64, 1337–1344 (2002).

    Article Google Scholar

  75. Lynagh, T. & Lynch, J. W. Ivermectin binding sites in human and invertebrate Cys-loop receptors. Trends Pharmacol. Sci. 33, 432–441 (2012).

    Article CAS PubMed Google Scholar

  76. Taman, A. & Ribeiro, P. Characterization of a truncated metabotropic glutamate receptor in a primitive metazoan, the parasitic flatworm Schistosoma mansoni. PLoS ONE 6, e27119 (2011).

    Article CAS PubMed PubMed Central Google Scholar

  77. Taman, A., El-Beshbishi, S., El-Tantawy, N., El-Hawary, A. & Azab, M. Evaluation of the in vivo effect of ivermectin on Schistosoma mansoni in experimentally-infected mice. J. Coastal Life Med 2, 817–823 (2014).

    CAS Google Scholar

  78. Nunes Alves, S. & de Melo, A. L. Effects of benzodiazepine and ivermectin on Girardia tigrina (Platyhelminthes: Turbellaria). Biosci. J. Uberlândia 29, 209–215 (2013).

    Google Scholar

  79. Matha, V. & Weiser, J. Molluscicidal effect of ivermectin on Biomphalaria glabrata. J. Invertebr. Pathol. 52, 354–355 (1988).

    Article CAS PubMed Google Scholar

  80. Sheele, J. M. et al. Ivermectin causes Cimex lectularius (Bedbug) morbidity and mortality. J. Emerg. Med. 45, 433–440 (2013).

    Article PubMed Google Scholar

  81. Gonser, L., Gonser, C. E. & Schaller, M. Pathogenesis, clinical picture, and current therapy of rosacea. [In German]. Hautarzt 67, 69–82 (2016).

    Article CAS PubMed Google Scholar

  82. Siddiqui, K., Stein Gold, L. & Gill, J. The efficacy, safety, and tolerability of ivermectin compared with current topical treatments for the inflammatory lesions of rosacea: a network meta-analysis. Springerplus 5, 1151 (2016).

    Article PubMed PubMed Central Google Scholar

  83. Yan, S. et al. Anti-inflammatory effects of ivermectin in a mouse model of allergic asthma. Inflamm. Res. 60, 589–596 (2011).

    Article CAS PubMed Google Scholar

  84. Dowell, S. F. et al. Nodding syndrome. Emerg. Infect. Dis. 19, 1374–1383 (2013).

    Article PubMed PubMed Central Google Scholar

  85. Winkler, A. S. et al. MRI findings in people with epilepsy and nodding syndrome in an area endemic for onchocerciasis: an observational study. Afr. Health Sci. 13, 529–540 (2013).

    CAS PubMed PubMed Central Google Scholar

  86. van Bemmel, K., Derluyn, I. & Stroeken, K. Nodding syndrome or disease? On the conceptualization of an illness-in-the-making. Ethn. Health 19, 100–118 (2014).

    Article PubMed Google Scholar

  87. Sejvar, J. J. et alClinical, neurological, and electrophysiological features of nodding syndrome in Kitgum, Uganda: an observational case series Lancet Neurol. 12, 166–174 (2013).

    Article PubMed Google Scholar

  88. Kaiser, C., Pion, S. & Boussinesq, M. Head nodding syndrome and river blindness: a parasitologic perspective. Epilepsia 50, 2325–2326 (2009).

    Article PubMed Google Scholar

  89. Vogel, G. Mystery disease haunts region. Science 336, 144–146 (2012).

    Article CAS PubMed Google Scholar

  90. Foltz, J. L. et al. An epidemiologic investigation of potential risk factors for nodding syndrome in Kitgum District, Uganda. PLoS ONE 8, e66419 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  91. Colebunders, R. et al. Nodding syndrome since 2012: recent progress, challenges and recommendations for future research. Trop. Med. Int. Health 20, 194–200 (2015).

    Article CAS PubMed Google Scholar

  92. Franklin, K. M. et al. P2X4 receptors (P2X4Rs) represent a novel target for the development of drugs to prevent and/or treat alcohol use disorders. Front. Neurosci 24, 176 (2014).

    Google Scholar

  93. Andries, M., Van Damme, P., Robberecht, W. & Van Den Bosch, L. Ivermectin inhibits AMPA receptor-mediated excitotoxicity in cultured motor neurons and extends the life span of a transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis. 25, 8–16 (2007).

    Article CAS PubMed Google Scholar

  94. Bouzat, C. New insights into the structural bases of activation of Cys-loop receptors. J. Physiol. Paris 106, 23–33 (2012).

    Article PubMed Google Scholar

  95. Lynagh, T. & Lynch, J. W. Ivermectin binding sites in human and invertebrate Cys-loop receptors. Trends Pharmacol. Sci. 33, 432–441 (2012).

    Article CAS PubMed Google Scholar

  96. Estrada-Mondragon, A . & Lynch, J. W. Functional characterization of ivermectin binding sites in α1β2γ2L GABA(A) receptors. Front. Mol. Neurosci. 8, 55 (2015).

    Article PubMed PubMed Central CAS Google Scholar

  97. Mastrangelo, E. et al. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. J. Antimcrob. Chemother. 67, 1884–1894 (2012).

    Article CAS Google Scholar

  98. Tay, M. Y. et al. Nuclear localization of dengue virus (DENV) 1-4 nonstructural protein 5: protection against all 4 DENV serotypes by the inhibitor ivermectin. Antiviral Res 99, 301–306 (2013).

    Article CAS PubMed Google Scholar

  99. Wagstaff, K. M., Sivakumaran, H., Heaton, S. M., Harrich, D. & Jans, D. A. Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue viruses. Biochem. J. 443 (Pt 3), 851–856 (2012).

    Article CAS PubMed Google Scholar

  100. Kosyna, F. K., Nage, M., Kluxen, L., Kraushaar, K. & Depping, R. The importin α/β-specific inhibitor ivermectin affects HIF-dependent hypoxia response pathways. Biol. Chem. 396, 1357–1367 (2015).

    Article CAS PubMed Google Scholar

  101. Pettengil, M. A., Lam, V. W., Ollawa, I., Marques-da-Silva, C. & Ojcius, D. M. Ivermectin inhibits growth of Chlamydia trachomatis in epithelial cells. PLoS ONE 7, e48456 (2012).

    Article CAS Google Scholar

  102. Lim, L. E., Vilchèze, C., Ng, C., Jacobs, W. R. Jr, Ramón-García, S. & Thompson, C. J. Anthelmintic avermectins kill Mycobacterium tuberculosis, including multidrug-resistant clinical strains. Antimicrob. Agents Chemother. 57, 1040–1046 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  103. Ameen, S. M. & Drancourt, M. Ivermectin lacks antituberculous activity. J. Antimicrob. Chemother. 68, 1936–1937 (2013).

    Article CAS Google Scholar

  104. Ramón-García, S. et al. Measurements of the in vitro anti-mycobacterial activity of ivermectin are method-dependent. J. Antimicrob. Chemother. 69, 1723–1724 (2014).

    Article PubMed CAS Google Scholar

  105. Omansen, T. F. et al. In-vitro activity of avermectins against Mycobacterium ulcerans. PLoS Negl. Trop. Dis. 9, e0003549 (2015).

    Article PubMed PubMed Central CAS Google Scholar

  106. Scherr, N., Pluschke, G., Thompson, C. J. & Ramón-García, S. Selamectin is the avermectin with the best potential for Buruli Ulcer treatment. PLoS Negl. Trop. Dis. 9, e0003996 (2015).

    Article PubMed PubMed Central CAS Google Scholar

  107. Drinyaev, V. A. et al. Antitumor effect of avermectins. Eur. J. Pharmacol. 501, 19–23 (2004).

    Article CAS PubMed Google Scholar

  108. Driniaev, V. A. et al. Modification of antitumor effect of vincristine by natural avermectins. [In Russian]. Antibiot. Khimioter. 49, 3–5 (2004).

    CAS PubMed Google Scholar

  109. Lee, H., Kang, S. & Kim, W. Drug repositioning for cancer therapy based on large-scale drug-induced transcriptional signatures. PLoS ONE 11, e0150460 (2016).

    Article PubMed PubMed Central CAS Google Scholar

  110. Hashimoto, H., Sudo, T., Maruta, H. & Nishimura, R. The direct PAK1 inhibitor, TAT-PAK18, blocks preferentially the growth of human ovarian cancer cell lines in which PAK1 is abnormally activated by autophosphorylation at Thr 423. Drug Discov. Ther. 4, 1–4 (2010).

    CAS PubMed Google Scholar

  111. Dou, Q. et al. Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt axis in breast cancer. Cancer Res. 76, 4457–4469 (2016).

    Article CAS PubMed Google Scholar

  112. Kwon, Y. J. et al. Selective inhibition of SIN3 co-repressor with avermectins as a novel therapeutic strategy in triple-negative breast cancer. Mol. Cancer. Ther 14, 1824–1836 (2015).

    Article CAS PubMed PubMed Central Google Scholar

  113. Sharmeen, S. et al. The antiparasitic agent ivermectin induces chloride-dependent membrane hyperpolarization and cell death in leukemia cells. Blood 116, 3593–3603 (2010).

    Article CAS PubMed Google Scholar

  114. Shen, M. et al. Identification of therapeutic candidates for chronic lymphocytic leukemia from a library of approved drugs. PLoS ONE 8, e75252 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  115. Furusawa, S. et al. Potentiation of doxorubicin-induced apoptosis of resistant mouse leukaemia cells by ivermectin. Pharm. Pharmacol. Commun. 6, 129–134 (2000).

    Article CAS Google Scholar

  116. Draganov, D. et al. Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci. Rep. 10, 16222 (2015).

    Article CAS Google Scholar

  117. Melotti, A. et al. The river blindness drug ivermectin and related macrocyclic lactones inhibit WNT-TCF pathway responses in human cancer. EMBO Mol. Med. 6, 1263–1278 (2014).

    Article CAS PubMed PubMed Central Google Scholar

  118. Ashraf, S. & Prichard, R. Ivermectin exhibits potent anti-mitotic activity. Vet. Parasitol. 226, 1–4 (2016).

    Article CAS PubMed Google Scholar

  119. Tibbit, M. W., Dahlman, J. E. & Langer, R. Emerging frontiers in drug delivery. J. Am. Chem. Soc. 138, 704–717 (2016).

    Article CAS Google Scholar

  120. González, P., González, F. A. & Ueno, K. Ivermectin in human medicine, an overview of the current status of its clinical applications. Curr. Pharm. Biotechnol. 13, 1103–1109 (2012).

    Article PubMed Google Scholar

  121. N.d. Drugs for parasitic infections. Med. Lett. Drugs Ther. 143, e1–31 (2013).

  122. Guzzo, C. A. et al. Safety, tolerability and pharmaco*kinetics of escalating high doses of ivermectin in healthy adult subjects. J. Clin. Pharmacol. 42, 1122–1133 (2002).

    Article CAS PubMed Google Scholar

  123. Gamboa, G. V. et al. Ivermectin-loaded lipid nanocapsules: toward the development of a new antiparasitic delivery system for veterinary applications. Parasitol. Res. 115, 1945–1953 (2016).

    Article PubMed Google Scholar

  124. Clark, S. L., Crowley, A. J., Schmidt, P. G., Donoghue, A. R. & Piché, C. A. Long-term delivery of ivermectin by use of poly(D,L-lactic-co-glycolic)acid microparticles in dogs. Am. J. Vet. Res. 65, 752–757 (2004).

    Article CAS PubMed Google Scholar

  125. Miller, A. J., Oehler, D. D. & Pound, M. J. Delivery of ivermectin by injectable microspheres. J. Econ. Entomol. 91, 655–659 (1998).

    Article CAS PubMed Google Scholar

  126. Liu, X., Sun, Q., Wang, H., Zhang, L. & Wang, J.-Y. Microspheres of corn protein, zein, for an ivermectin drug delivery system. Biomaterials 26, 109–115 (2005).

    Article PubMed CAS Google Scholar

  127. Ding, D., Sheng, X.-L., Liang, K.-X., Xu, Q. & Liu, W. Study on ivermectin nanoemulsion for transdermal drug delivery. China Animal Husbandry Vet. Med. J. 42, 401–407 (2015).

    CAS Google Scholar

  128. Chaccour, C. et al. Screening for an ivermectin slow-release formulation suitable for malaria vector control. Malar. J. 14, 102 (2015).

    Article PubMed PubMed Central CAS Google Scholar

  129. Miyajima, A. et al. Experimental study of pharmaco*kinetics of external, whole-body bathing application of ivermectin. J. Dermatol. 42, 87–89 (2015).

    Article CAS PubMed Google Scholar

  130. Yardley, M. M., Huynh, N., Rodgers, K. E., Alkana, R. L. & Davies, D. L. Oral delivery of ivermectin using a fast dissolving oral film: implications for repurposing ivermectin as a pharmacotherapy for alcohol use disorder. Alcohol 49, 553–559 (2015).

    Article CAS PubMed PubMed Central Google Scholar

Download references

Ivermectin: enigmatic multifaceted ‘wonder’ drug continues to surprise and exceed expectations (2024)
Top Articles
Latest Posts
Article information

Author: Geoffrey Lueilwitz

Last Updated:

Views: 6549

Rating: 5 / 5 (60 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Geoffrey Lueilwitz

Birthday: 1997-03-23

Address: 74183 Thomas Course, Port Micheal, OK 55446-1529

Phone: +13408645881558

Job: Global Representative

Hobby: Sailing, Vehicle restoration, Rowing, Ghost hunting, Scrapbooking, Rugby, Board sports

Introduction: My name is Geoffrey Lueilwitz, I am a zealous, encouraging, sparkling, enchanting, graceful, faithful, nice person who loves writing and wants to share my knowledge and understanding with you.