YAP/TAZ: Molecular pathway and disease therapy (2024)

1. Nguyen CDK, Yi C. YAP/TAZ signaling and resistance to cancer therapy. Trends Cancer. 2019;5(5):283–296. [PMC free article] [PubMed] [Google Scholar]

2. Rodrigues‐Pousada C, Devaux F, Caetano SM, etal. Yeast AP‐1 like transcription factors (Yap) and stress response: a current overview. Microb Cell. 2019;6(6):267–285. [PMC free article] [PubMed] [Google Scholar]

3. Webb C, Upadhyay A, Giuntini F, etal. Structural features and ligand binding properties of tandem WW domains from YAP and TAZ, nuclear effectors of the Hippo pathway. Biochemistry. 2011;50(16):3300–3309. [PubMed] [Google Scholar]

4. Zhou A, Yu H, Liu J, etal. Role of Hippo‐YAP signaling in osseointegration by regulating osteogenesis, angiogenesis, and osteoimmunology. Front Cell Dev Biol. 2020;8:780. [PMC free article] [PubMed] [Google Scholar]

5. Kim Y, Jho E. Regulation of the Hippo signaling pathway by ubiquitin modification. BMB Rep. 2018;51(3):143–150. [PMC free article] [PubMed] [Google Scholar]

6. Li HL, Li QY, Jin MJ, etal. A review: hippo signaling pathway promotes tumor invasion and metastasis by regulating target gene expression. J Cancer Res Clin Oncol. 2021;147(6):1569–1585. [PubMed] [Google Scholar]

7. Castelnovo LF, Bonalume V, Melfi S, Ballabio M, Colleoni D, Magnaghi V. Schwann cell development, maturation and regeneration: a focus on classic and emerging intracellular signaling pathways. Neural Regen Res. 2017;12(7):1013–1023. [PMC free article] [PubMed] [Google Scholar]

8. Yeung YT, Guerrero‐Castilla A, Cano M, Muñoz MF, Ayala A, Argüelles S. Dysregulation of the Hippo pathway signaling in aging and cancer. Pharmacol Res. 2019;143:151–165. [PubMed] [Google Scholar]

9. Zheng A, Chen Q, Zhang L. The Hippo‐YAP pathway in various cardiovascular diseases: focusing on the inflammatory response. Front Immunol. 2022;13:971416. [PMC free article] [PubMed] [Google Scholar]

10. Kitamoto S, Nagao‐Kitamoto H, Hein R, Schmidt TM, Kamada N. The bacterial connection between the oral cavity and the gut diseases. J Dent Res. 2020;99(9):1021–1029. [PMC free article] [PubMed] [Google Scholar]

11. Primi MC, Rangarajan ES, Patil DN, Izard T. Conformational flexibility determines the Nf2/merlin tumor suppressor functions. Matrix Biol Plus. 2021;12:100074. [PMC free article] [PubMed] [Google Scholar]

12. Wu H, Wei L, Fan F, etal. Integration of Hippo signalling and the unfolded protein response to restrain liver overgrowth and tumorigenesis. Nat Commun. 2015;6:6239. [PubMed] [Google Scholar]

13. Zhao C, Zeng C, Ye S, etal. Yes‐associated protein (YAP) and transcriptional coactivator with a PDZ‐binding motif (TAZ): a nexus between hypoxia and cancer. Acta Pharm Sin B. 2020;10(6):947–960. [PMC free article] [PubMed] [Google Scholar]

14. Ma B, Chen Y, Chen L, etal. Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase. Nat Cell Biol. 2015;17(1):95–103. [PubMed] [Google Scholar]

15. Taha Z, Janse van Rensburg HJ, Yang X. The Hippo pathway: immunity and cancer. Cancers (Basel). 2018;10(4). [PMC free article] [PubMed] [Google Scholar]

16. Wu Z, Guan KL. Hippo signaling in embryogenesis and development. Trends Biochem Sci. 2021;46(1):51–63. [PMC free article] [PubMed] [Google Scholar]

17. Kim MK, Jang JW, Bae SC. DNA binding partners of YAP/TAZ. BMB Rep. 2018;51(3):126–133. [PMC free article] [PubMed] [Google Scholar]

18. Azzolin L, Zanconato F, Bresolin S, etal. Role of TAZ as mediator of Wnt signaling. Cell. 2012;151(7):1443–1456. [PubMed] [Google Scholar]

19. Park H, Kim Y, Yu B, etal. Alternative Wnt signaling activates YAP/TAZ. Cell. 2015;162(4):780–794. [PMC free article] [PubMed] [Google Scholar]

20. Kim NH, Lee Y, Yook JI. Dishevelling Wnt and Hippo. BMB Rep. 2018;51(9):425–426. [PMC free article] [PubMed] [Google Scholar]

21. Kriz V, Wnt Korinek V., RSPO and Hippo signalling in the intestine and intestinal stem cells. Genes (Basel). 2018;9(1). [PMC free article] [PubMed] [Google Scholar]

22. Wu M, Li Z, Liang L, etal. Wnt signaling contributes to withdrawal symptoms from opioid receptor activation induced by morphine exposure or chronic inflammation. Pain. 2020;161(3):532–544. [PMC free article] [PubMed] [Google Scholar]

23. Wang C, Han X, Zhou Z, etal. Wnt3a activates the WNT‐YAP/TAZ pathway to sustain CDX2 expression in bovine trophoblast stem cells. DNA Cell Biol. 2019;38(5):410–422. [PubMed] [Google Scholar]

24. Azzolin L, Panciera T, Soligo S, etal. YAP/TAZ incorporation in the β‐catenin destruction complex orchestrates the Wnt response. Cell. 2014;158(1):157–170. [PubMed] [Google Scholar]

25. Kovar H, Bierbaumer L, Radic‐Sarikas B. The YAP/TAZ pathway in osteogenesis and bone sarcoma pathogenesis. Cells. 2020;9(4). [PMC free article] [PubMed] [Google Scholar]

26. Chai Y, Li Q, Zhao H, etal. SOX2 antagonizes WWC1 to drive YAP1 activation in esophageal squamous cell carcinoma. Cancer Med. 2019;8(16):7055–7064. [PMC free article] [PubMed] [Google Scholar]

27. Heallen T, Zhang M, Wang J, etal. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science (New York, NY). 2011;332(6028):458–461. [PMC free article] [PubMed] [Google Scholar]

28. Guillermin O, Angelis N, Sidor CM, etal. Wnt and Src signals converge on YAP‐TEAD to drive intestinal regeneration. Embo J. 2021;40(13):e105770. [PMC free article] [PubMed] [Google Scholar]

29. Xiao Y, Liu Q, Peng N, etal. Lovastatin inhibits RhoA to suppress canonical Wnt/β‐catenin signaling and alternative Wnt‐YAP/TAZ signaling in colon cancer. Cell Transplant. 2022;31:9636897221075749. [PMC free article] [PubMed] [Google Scholar] Retracted

30. Laeremans T, Sands ZA, Claes P, etal. Accelerating GPCR drug discovery with conformation‐stabilizing VHHs. Front Mol Biosci. 2022;9:863099. [PMC free article] [PubMed] [Google Scholar]

31. Luo J, Yu FX. GPCR‐Hippo signaling in cancer. Cells. 2019;8(5). [PMC free article] [PubMed] [Google Scholar]

32. Shen Y, Zhao S, Wang S, etal. S1P/S1PR3 axis promotes aerobic glycolysis by YAP/c‐MYC/PGAM1 axis in osteosarcoma. EBioMedicine. 2019;40:210–223. [PMC free article] [PubMed] [Google Scholar]

33. Kemppainen K, Wentus N, Lassila T, Laiho A, Törnquist K. Sphingosylphosphorylcholine regulates the Hippo signaling pathway in a dual manner. Cell Signal. 2016;28(12):1894–1903. [PubMed] [Google Scholar]

34. Cortes E, Lachowski D, Rice A, etal. Tamoxifen mechanically deactivates hepatic stellate cells via the G protein‐coupled estrogen receptor. Oncogene. 2019;38(16):2910–2922. [PMC free article] [PubMed] [Google Scholar]

35. Wang Y, Liao R, Chen X, etal. Twist‐mediated PAR1 induction is required for breast cancer progression and metastasis by inhibiting Hippo pathway. Cell Death Dis. 2020;11(7):520. [PMC free article] [PubMed] [Google Scholar]

36. Arakaki AKS, Pan WA, Wedegaertner H, etal. α‐Arrestin ARRDC3 tumor suppressor function is linked to GPCR‐induced TAZ activation and breast cancer metastasis. J Cell Sci. 2021;134(8). [PMC free article] [PubMed] [Google Scholar]

37. Lin M, Yuan W, Su Z, etal. Yes‐associated protein mediates angiotensin II‐induced vascular smooth muscle cell phenotypic modulation and hypertensive vascular remodelling. Cell Prolif. 2018;51(6):e12517. [PMC free article] [PubMed] [Google Scholar]

38. Meduri B, Pujar GV, Durai Ananda Kumar T, etal. Lysophosphatidic acid (LPA) receptor modulators: structural features and recent development. Eur J Med Chem. 2021;222:113574. [PubMed] [Google Scholar]

39. Yanagida K, Igarashi H, Yasuda D, etal. The Gα12/13‐coupled receptor LPA4 limits proper adipose tissue expansion and remodeling in diet‐induced obesity. JCI Insight. 2018;3(24). [PMC free article] [PubMed] [Google Scholar]

40. Yasuda D, Kobayashi D, Akahoshi N, etal. Lysophosphatidic acid‐induced YAP/TAZ activation promotes developmental angiogenesis by repressing Notch ligand Dll4. J Clin Invest. 2019;129(10):4332–4349. [PMC free article] [PubMed] [Google Scholar]

41. Feng X, Liu P, Zhou X, etal. Thromboxane A2 activates YAP/TAZ protein to induce vascular smooth muscle cell proliferation and migration. J Biol Chem. 2016;291(36):18947–18958. [PMC free article] [PubMed] [Google Scholar]

42. Koo JH, Guan KL. Interplay between YAP/TAZ and metabolism. Cell Metab. 2018;28(2):196–206. [PubMed] [Google Scholar]

43. Zmajkovicova K, Bauer Y, Menyhart K, etal. GPCR‐induced YAP activation sensitizes fibroblasts to profibrotic activity of TGFβ1. PLoS One. 2020;15(2):e0228195. [PMC free article] [PubMed] [Google Scholar]

44. Shin Y, Jung W, Kim MY, etal. NPFFR2 contributes to the malignancy of hepatocellular carcinoma development by activating RhoA/YAP signaling. Cancers (Basel). 2022;14(23). [PMC free article] [PubMed] [Google Scholar]

45. Jiang Y, Li T, Wu Y, etal. GPR39 overexpression in OSCC promotes YAP‐sustained malignant progression. J Dent Res. 2020;99(8):949–958. [PubMed] [Google Scholar]

46. Wang W, Qiao Y, Li Z. New insights into modes of GPCR activation. Trends Pharmacol Sci. 2018;39(4):367–386. [PubMed] [Google Scholar]

47. Wang W, Li W, Liu K, etal. Src mediates β‐adrenergic receptor induced YAP tyrosine phosphorylation. Sci China Life Sci. 2020;63(5):697–705. [PubMed] [Google Scholar]

48. Zindel D, Mensat P, Vol C, etal. G protein‐coupled receptors can control the Hippo/YAP pathway through Gq signaling. Faseb J. 2021;35(7):e21668. [PubMed] [Google Scholar]

49. Hao F, Xu Q, Zhao Y, etal. Insulin receptor and GPCR crosstalk stimulates YAP via PI3K and PKD in pancreatic cancer cells. Mol Cancer Res. 2017;15(7):929–941. [PMC free article] [PubMed] [Google Scholar]

50. Cheng JC, Fang L, Li Y, etal. G protein‐coupled estrogen receptor stimulates human trophoblast cell invasion via YAP‐mediated ANGPTL4 expression. Commun Biol. 2021;4(1):1285. [PMC free article] [PubMed] [Google Scholar]

51. Sun Y, Leng P, Guo P, etal. G protein coupled estrogen receptor attenuates mechanical stress‐mediated apoptosis of chondrocyte in osteoarthritis via suppression of Piezo1. Mol Med. 2021;27(1):96. [PMC free article] [PubMed] [Google Scholar]

52. Shagufta, Ahmad I. Tamoxifen a pioneering drug: An update on the therapeutic potential of tamoxifen derivatives. Eur J Med Chem. 2018;143:515–531. [PubMed] [Google Scholar]

53. Zhu C, Li L, Zhang Z, etal. A non‐canonical role of YAP/TEAD is required for activation of estrogen‐regulated enhancers in breast cancer. Mol Cell. 2019;75(4):791–806.e8. [PMC free article] [PubMed] [Google Scholar]

54. Jeon Y, Yoo JE, Rhee H, etal. YAP inactivation in estrogen receptor alpha‐positive hepatocellular carcinoma with less aggressive behavior. Exp Mol Med. 2021;53(6):1055–1067. [PMC free article] [PubMed] [Google Scholar]

55. Hasegawa K, Fujii S, Matsumoto S, Tajiri Y, Kikuchi A, Kiyoshima T. YAP signaling induces PIEZO1 to promote oral squamous cell carcinoma cell proliferation. J Pathol. 2021;253(1):80–93. [PubMed] [Google Scholar]

56. Zhang K, Li J, Li Y. Ginsenoside Rg1 alleviates hepatic ischemia‐reperfusion injury in mice via activating ERα‐regulating YAP expression. Evid Based Complement Alternat Med. 2021;2021:6486109. [PMC free article] [PubMed] [Google Scholar]

57. Moon S, Lee OH, Kim B, etal. Estrogen regulates the expression and localization of YAP in the uterus of mice. Int J Mol Sci. 2022;23(17). [PMC free article] [PubMed] [Google Scholar]

58. Park M, Lee SH, Bui QT, Kim YM, Kang KW. The essential role of YAP in ERα36‐mediated proliferation and the epithelial‐mesenchymal transition in MCF‐7 breast cancer cells. Front Pharmacol. 2022;13:1057276. [PMC free article] [PubMed] [Google Scholar]

59. Muhammad JS, Guimei M, Jayakumar MN, etal. Estrogen‐induced hypomethylation and overexpression of YAP1 facilitate breast cancer cell growth and survival. Neoplasia. 2021;23(1):68–79. [PMC free article] [PubMed] [Google Scholar]

60. Wei Q, He M, Chen M, etal. Icariin stimulates osteogenic differentiation of rat bone marrow stromal stem cells by increasing TAZ expression. Biomed Pharmacother. 2017;91:581–589. [PubMed] [Google Scholar]

61. Bahramian S, TS F, Fazel A, etal. Evaluation of Arylsulfatase D (ARSD) and long noncoding RNA ARSD‐AS1 gene expression in breast cancer patients and their association with oncogenic transcription factors. J BUON. 2020;25(4):1805–1813. [PubMed] [Google Scholar]

62. Lin Y, Li C, Xiong W, Fan L, Pan H, Li Y. ARSD, a novel ERα downstream target gene, inhibits proliferation and migration of breast cancer cells via activating Hippo/YAP pathway. Cell Death Dis. 2021;12(11):1042. [PMC free article] [PubMed] [Google Scholar]

63. Li X, Zhuo S, Zhuang T, etal. YAP inhibits ERα and ER(+) breast cancer growth by disrupting a TEAD‐ERα signaling axis. Nat Commun. 2022;13(1):3075. [PMC free article] [PubMed] [Google Scholar]

64. Ma S, Tang T, Probst G, etal. Transcriptional repression of estrogen receptor alpha by YAP reveals the Hippo pathway as therapeutic target for ER(+) breast cancer. Nat Commun. 2022;13(1):1061. [PMC free article] [PubMed] [Google Scholar]

65. Kim H, Son S, Ko Y, Lee JE, Kim S, Shin I. YAP, CTGF and Cyr61 are overexpressed in tamoxifen‐resistant breast cancer and induce transcriptional repression of ERα. J Cell Sci. 2021;134(11). [PubMed] [Google Scholar]

66. Britschgi A, Duss S, Kim S, etal. The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα. Nature. 2017;541(7638):541–545. [PMC free article] [PubMed] [Google Scholar]

67. Elbediwy A, Thompson BJ. Evolution of mechanotransduction via YAP/TAZ in animal epithelia. Curr Opin Cell Biol. 2018;51:117–123. [PubMed] [Google Scholar]

68. Panciera T, Azzolin L, Cordenonsi M, Piccolo S. Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol. 2017;18(12):758–770. [PMC free article] [PubMed] [Google Scholar]

69. Nardone G, Oliver‐De La Cruz J, Vrbsky J, etal. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat Commun. 2017;8:15321. [PMC free article] [PubMed] [Google Scholar]

70. Kim NG, Gumbiner BM. Adhesion to fibronectin regulates Hippo signaling via the FAK‐Src‐PI3K pathway. J Cell Biol. 2015;210(3):503–515. [PMC free article] [PubMed] [Google Scholar]

71. Fan R, Kim NG, Gumbiner BM. Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3‐kinase and phosphoinositide‐dependent kinase‐1. Proc Natl Acad Sci USA. 2013;110(7):2569–2574. [PMC free article] [PubMed] [Google Scholar]

72. Lachowski D, Cortes E, Robinson B, Rice A, Rombouts K, Del Río Hernández AE. FAK controls the mechanical activation of YAP, a transcriptional regulator required for durotaxis. Faseb J. 2018;32(2):1099–1107. [PubMed] [Google Scholar]

73. Wang S, Englund E, Kjellman P, etal. CCM3 is a gatekeeper in focal adhesions regulating mechanotransduction and YAP/TAZ signalling. Nat Cell Biol. 2021;23(7):758–770. [PubMed] [Google Scholar]

74. Wen SM, Wen WC, Chao PG. Zyxin and actin structure confer anisotropic YAP mechanotransduction. Acta Biomater. 2022;152:313–320. [PubMed] [Google Scholar]

75. Jing X, Liu B, Deng S, Du J, She Q. Agrin Yes‐associated protein promotes the proliferation of epicardial cells. J Cardiovasc Pharmacol. 2021;77(1):94–99. [PubMed] [Google Scholar]

76. Chakraborty S, Njah K, Pobbati AV, etal. Agrin as a mechanotransduction signal regulating YAP through the Hippo pathway. Cell Rep. 2017;18(10):2464–2479. [PubMed] [Google Scholar]

77. Yamashiro Y, Thang BQ, Ramirez K, etal. Matrix mechanotransduction mediated by thrombospondin‐1/integrin/YAP in the vascular remodeling. Proc Natl Acad Sci USA. 2020;117(18):9896–9905. [PMC free article] [PubMed] [Google Scholar]

78. Meng Z, Qiu Y, Lin KC, etal. RAP2 mediates mechanoresponses of the Hippo pathway. Nature. 2018;560(7720):655–660. [PMC free article] [PubMed] [Google Scholar]

79. Merkel CD, Li Y, Raza Q, Stolz DB, Kwiatkowski AV. Vinculin anchors contractile actin to the cardiomyocyte adherens junction. Mol Biol Cell. 2019;30(21):2639–2650. [PMC free article] [PubMed] [Google Scholar]

80. Goswami S, Balasubramanian I, D'Agostino L, etal. RAB11A‐mediated YAP localization to adherens and tight junctions is essential for colonic epithelial integrity. J Biol Chem. 2021;297(1):100848. [PMC free article] [PubMed] [Google Scholar]

81. Zhen G, Guo Q, Li Y, etal. Mechanical stress determines the configuration of TGFβ activation in articular cartilage. Nat Commun. 2021;12(1):1706. [PMC free article] [PubMed] [Google Scholar]

82. Amin R, Shukla A, Zhu JJ, etal. Nuclear pore protein NUP210 depletion suppresses metastasis through heterochromatin‐mediated disruption of tumor cell mechanical response. Nat Commun. 2021;12(1):7216. [PMC free article] [PubMed] [Google Scholar]

83. Cai X, Wang KC, Meng Z. Mechanoregulation of YAP and TAZ in cellular homeostasis and disease progression. Front Cell Dev Biol. 2021;9:673599. [PMC free article] [PubMed] [Google Scholar]

84. Elosegui‐Artola A, Andreu I, Beedle AEM, etal. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell. 2017;171(6):1397–1410.e14. [PubMed] [Google Scholar]

85. Furukawa KT, Yamash*ta K, Sakurai N, Ohno S. The epithelial circumferential actin belt regulates YAP/TAZ through nucleocytoplasmic shuttling of merlin. Cell Rep. 2017;20(6):1435–1447. [PubMed] [Google Scholar]

86. Li H, Liu Y, Zhang J, etal. Quantification of mechanical stimuli inducing nucleoplasmic translocation of YAP and its distribution mechanism using an AFM‐dSTORM coupled technique. Nanoscale. 2022;14(41):15516–15524. [PubMed] [Google Scholar]

87. Gao J, He L, Zhou L, etal. Mechanical force regulation of YAP by F‐actin and GPCR revealed by super‐resolution imaging. Nanoscale. 2020;12(4):2703–2714. [PubMed] [Google Scholar]

88. Chang L, Azzolin L, Di Biagio D, etal. The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature. 2018;563(7730):265–269. [PMC free article] [PubMed] [Google Scholar]

89. Pocaterra A, Scattolin G, Romani P, etal. Fascin1 empowers YAP mechanotransduction and promotes cholangiocarcinoma development. Commun Biol. 2021;4(1):763. [PMC free article] [PubMed] [Google Scholar]

90. Xu X, Liu S, Liu H, etal. Piezo channels: awesome mechanosensitive structures in cellular mechanotransduction and their role in bone. Int J Mol Sci. 2021;22(12). [PMC free article] [PubMed] [Google Scholar]

91. duch*emin AL, Vignes H, Vermot J. Mechanically activated piezo channels modulate outflow tract valve development through the Yap1 and Klf2‐Notch signaling axis. Elife. 2019;8 [PMC free article] [PubMed] [Google Scholar]

92. Zhou T, Gao B, Fan Y, etal. Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT‐YAP1‐ß‐catenin. Elife. 2020;9 [PMC free article] [PubMed] [Google Scholar]

93. Peng C, Zhu Y, Zhang W, etal. Regulation of the Hippo‐YAP pathway by glucose sensor O‐GlcNAcylation. Mol Cell. 2017;68(3):591–604.e5. [PubMed] [Google Scholar]

94. Zhang X, Qiao Y, Wu Q, etal. The essential role of YAP O‐GlcNAcylation in high‐glucose‐stimulated liver tumorigenesis. Nat Commun. 2017;8:15280. [PMC free article] [PubMed] [Google Scholar]

95. Gailite I, Aerne B, Tapon N. Differential control of Yorkie activity by LKB1/AMPK and the Hippo/Warts cascade in the central nervous system. Proc Natl Acad Sci USA. 2015;112(37):E5169‐E5178. [PMC free article] [PubMed] [Google Scholar]

96. Enzo E, Santinon G, Pocaterra A, etal. Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J. 2015;34(10):1349–1370. [PMC free article] [PubMed] [Google Scholar]

97. Noto A, De Vitis C, Pisanu M, etal. Stearoyl‐CoA‐desaturase 1 regulates lung cancer stemness via stabilization and nuclear localization of YAP/TAZ. Oncogene. 2017;36(32):4573–4584. [PubMed] [Google Scholar]

98. Sethunath V, Hu H, De Angelis C, etal. Targeting the mevalonate pathway to overcome acquired anti‐HER2 treatment resistance in breast cancer. Mol Cancer Res. 2019;17(11):2318–2330. [PMC free article] [PubMed] [Google Scholar]

99. Mesrouze Y, Meyerhofer M, Bokhovchuk F, etal. Effect of the acylation of TEAD4 on its interaction with co‐activators YAP and TAZ. Protein Sci. 2017;26(12):2399–2409. [PMC free article] [PubMed] [Google Scholar]

100. Rosen ED, Kaestner KH, Natarajan R, etal. Epigenetics and epigenomics: implications for diabetes and obesity. Diabetes. 2018;67(10):1923–1931. [PMC free article] [PubMed] [Google Scholar]

101. Rodríguez‐Ubreva J, Arutyunyan A, Bonder MJ, etal. Single‐cell Atlas of common variable immunodeficiency shows germinal center‐associated epigenetic dysregulation in B‐cell responses. Nat Commun. 2022;13(1):1779. [PMC free article] [PubMed] [Google Scholar]

102. Ilango S, Paital B, Jayachandran P, Padma PR, Nirmaladevi R. Epigenetic alterations in cancer. Front Biosci (Landmark Ed). 2020;25(6):1058–1109. [PubMed] [Google Scholar]

103. Chen Z, Zhang Y. Role of mammalian DNA methyltransferases in development. Annu Rev Biochem. 2020;89:135–158. [PubMed] [Google Scholar]

104. Zaib S, Rana N, Khan I. Histone modifications and their role in epigenetics of cancer. Curr Med Chem. 2022;29(14):2399–2411. [PubMed] [Google Scholar]

105. Akbari A, Abbasi S, Borumandnia N, etal. Epigenetic regulation of gastrointestinal cancers mediated by long non‐coding RNAs. Cancer Biomark. 2022;35(4):359–377. [PubMed] [Google Scholar]

106. Zhang L, Lu Q, Chang C. Epigenetics in health and disease. Adv Exp Med Biol. 2020;1253:3–55. [PubMed] [Google Scholar]

107. Real SAS, Parveen F, Rehman AU, etal. Aberrant promoter methylation of YAP gene and its subsequent downregulation in indian breast cancer patients. BMC Cancer. 2018;18(1):711. [PMC free article] [PubMed] [Google Scholar]

108. Wang HY, Long QY, Tang SB, etal. Histone demethylase KDM3A is required for enhancer activation of hippo target genes in colorectal cancer. Nucleic Acids Res. 2019;47(5):2349–2364. [PMC free article] [PubMed] [Google Scholar]

109. Yang G, Zhou C, Wang R, etal. Base‐editing‐mediated R17H substitution in histone H3 reveals methylation‐dependent regulation of Yap signaling and early mouse embryo development. Cell Rep. 2019;26(2):302–312.e4. [PubMed] [Google Scholar]

110. Li H, Wang X, Mu H, etal. Mir‐484 contributes to diminished ovarian reserve by regulating granulosa cell function via YAP1‐mediated mitochondrial function and apoptosis. Int J Biol Sci. 2022;18(3):1008–1021. [PMC free article] [PubMed] [Google Scholar]

111. Wang L, Zhang Z, Yu X, etal. Unbalanced YAP‐SOX9 circuit drives stemness and malignant progression in esophageal squamous cell carcinoma. Oncogene. 2019;38(12):2042–2055. [PMC free article] [PubMed] [Google Scholar]

112. Xu J, Ma B, Chen G, Wei D, Li L, Hu W. MicroRNA‐622 suppresses the proliferation of glioma cells by targeting YAP1. J Cell Biochem. 2018;119(3):2492–2500. [PubMed] [Google Scholar]

113. Wu N, Yuan Z, Du KY, etal. Translation of yes‐associated protein (YAP) was antagonized by its circular RNA via suppressing the assembly of the translation initiation machinery. Cell Death Differ. 2019;26(12):2758–2773. [PMC free article] [PubMed] [Google Scholar]

114. Tian S, Liu Y, Dong F, Dou Y, Li W, Wang J. Knockdown of microRNA‐584 promotes dental pulp stem cells proliferation by targeting TAZ. Cell Cycle. 2020;19(9):1048–1058. [PMC free article] [PubMed] [Google Scholar]

115. Cao Y, Shen T, Zhang C, Zhang QH, Zhang ZQ. MiR‐125a‐5p inhibits EMT of ovarian cancer cells by regulating TAZ/EGFR signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(19):8249–8256. [PubMed] [Google Scholar]

116. Hu J, Ji C, Hua K, etal. Hsa_circ_0091074 regulates TAZ expression via microRNA‑1297 in triple negative breast cancer cells. Int J Oncol. 2020;56(5):1314–1326. [PubMed] [Google Scholar]

117. Wu D, Jia H, Zhang Z, Li S. Circ_0000511 accelerates the proliferation, migration and invasion, and restrains the apoptosis of breast cancer cells through the miR‑326/TAZ axis. Int J Oncol. 2021;58(4). [PMC free article] [PubMed] [Google Scholar]

118. Yu Y, Su X, Qin Q, etal. Yes‐associated protein and transcriptional coactivator with PDZ‐binding motif as new targets in cardiovascular diseases. Pharmacol Res. 2020;159:105009. [PubMed] [Google Scholar]

119. Qu S, Liao Q, Yu C, etal. LKB1 suppression promotes cardiomyocyte regeneration via LKB1‐AMPK‐YAP axis. Bosn J Basic Med Sci. 2022;22(5):772–783. [PMC free article] [PubMed] [Google Scholar]

120. Holmes B, Benavides‐Serrato A, Saunders JT, Kumar S, Nishimura RN, Gera J. mTORC2‐mediated direct phosphorylation regulates YAP activity promoting glioblastoma growth and invasive characteristics. Neoplasia. 2021;23(9):951–965. [PMC free article] [PubMed] [Google Scholar]

121. Xu X, Li Y, Zhang R, etal. Jianpi Yangzheng decoction suppresses gastric cancer progression via modulating the miR‐448/CLDN18.2 mediated YAP/TAZ signaling. J Ethnopharmacol. 2023;311:116450. [PubMed] [Google Scholar]

122. Aharonov A, Shakked A, Umansky KB, etal. ERBB2 drives YAP activation and EMT‐like processes during cardiac regeneration. Nat Cell Biol. 2020;22(11):1346–1356. [PubMed] [Google Scholar]

123. Huang C, Yuan W, Lai C, etal. EphA2‐to‐YAP pathway drives gastric cancer growth and therapy resistance. Int J Cancer. 2020;146(7):1937–1949. [PubMed] [Google Scholar]

124. Starlinger P, Brunnthaler L, Watkins R, etal. Tyrosine phosphorylation of YAP‐1 in biliary epithelial cells mediates posthepatectomy liver regeneration and is affected by serotonin. J Cell Biochem. 2023; [PMC free article] [PubMed] [Google Scholar]

125. Hata S, Hirayama J, Kajiho H, etal. A novel acetylation cycle of transcription co‐activator Yes‐associated protein that is downstream of Hippo pathway is triggered in response to SN2 alkylating agents. J Biol Chem. 2012;287(26):22089–22098. [PMC free article] [PubMed] [Google Scholar]

126. Yuan P, Hu Q, He X, etal. Laminar flow inhibits the Hippo/YAP pathway via autophagy and SIRT1‐mediated deacetylation against atherosclerosis. Cell Death Dis. 2020;11(2):141. [PMC free article] [PubMed] [Google Scholar]

127. Zhang S, Guo M, Jiang X, etal. PXR triggers YAP‐TEAD binding and Sirt2‐driven YAP deacetylation and polyubiquitination to promote liver enlargement and regeneration in mice. Pharmacol Res. 2023;188:106666. [PubMed] [Google Scholar]

128. Yuan F, Wang J, Li R, etal. A new regulatory mechanism between P53 and YAP crosstalk by SIRT1 mediated deacetylation to regulate cell cycle and apoptosis in A549 cell lines. Cancer Manag Res. 2019;11:8619–8633. [PMC free article] [PubMed] [Google Scholar]

129. Fang L, Teng H, Wang Y, etal. SET1A‐mediated mono‐methylation at K342 regulates YAP activation by blocking its nuclear export and promotes tumorigenesis. Cancer Cell. 2018;34(1):103–118.e9. [PubMed] [Google Scholar]

130. Gu Y, Chen Y, Wei L, etal. ABHD5 inhibits YAP‐induced c‐Met overexpression and colon cancer cell stemness via suppressing YAP methylation. Nat Commun. 2021;12(1):6711. [PMC free article] [PubMed] [Google Scholar]

131. Ambrosini S, Montecucco F, Kolijn D, etal. Methylation of the Hippo effector YAP by the methyltransferase SETD7 drives myocardial ischaemic injury: a translational study. Cardiovasc Res. 2023;118(17):3374–3385. [PubMed] [Google Scholar]

132. Chen S, Wu H, Wang Z, etal. Loss of SPTBN1 suppresses autophagy Via SETD7‐mediated YAP methylation in hepatocellular carcinoma initiation and development. Cell Mol Gastroenterol Hepatol. 2022;13(3):949–973.e7. [PMC free article] [PubMed] [Google Scholar]

133. Mondal A, Das S, Samanta J, Chakraborty S, Sengupta A. YAP1 induces hyperglycemic stress‐mediated cardiac hypertrophy and fibrosis in an AKT‐FOXM1 dependent signaling pathway. Arch Biochem Biophys. 2022;722:109198. [PubMed] [Google Scholar]

134. Hu L, Wu H, Jiang T, etal. pVHL promotes lysosomal degradation of YAP in lung adenocarcinoma. Cell Signal. 2021;83:110002. [PubMed] [Google Scholar]

135. Zhang C, Niu Y, Wang Z, etal. Corosolic acid inhibits cancer progression by decreasing the level of CDK19‐mediated O‐GlcNAcylation in liver cancer cells. Cell Death Dis. 2021;12(10):889. [PMC free article] [PubMed] [Google Scholar]

136. Zhu G, Murshed A, Li H, etal. O‐GlcNAcylation enhances sensitivity to RSL3‐induced ferroptosis via the YAP/TFRC pathway in liver cancer. Cell Death Discov. 2021;7(1):83. [PMC free article] [PubMed] [Google Scholar]

137. Singhatanadgit W, Hankamolsiri W, Janvikul W. Geranylgeraniol prevents zoledronic acid‐mediated reduction of viable mesenchymal stem cells via induction of Rho‐dependent YAP activation. R Soc Open Sci. 2021;8(6):202066. [PMC free article] [PubMed] [Google Scholar]

138. Vigneau AL, Rico C, Boerboom D, Paquet M. Statins downregulate YAP and TAZ and exert anti‐cancer effects in canine mammary tumour cells. Vet Comp Oncol. 2022;20(2):437–448. [PubMed] [Google Scholar]

139. Sun Y, Hu L, Tao Z, etal. Pharmacological blockade of TEAD‐YAP reveals its therapeutic limitation in cancer cells. Nat Commun. 2022;13(1):6744. [PMC free article] [PubMed] [Google Scholar]

140. Tang TT, Konradi AW, Feng Y, etal. Small molecule inhibitors of TEAD auto‐palmitoylation selectively inhibit proliferation and tumor growth of NF2‐deficient mesothelioma. Mol Cancer Ther. 2021;20(6):986–998. [PubMed] [Google Scholar]

141. Song Z, Yang H, Zhou L, Yang F. Glucose‐sensing transcription factor MondoA/ChREBP as targets for type 2 diabetes: opportunities and challenges. Int J Mol Sci. 2019;20(20). [PMC free article] [PubMed] [Google Scholar]

142. Shu Z, Yi G, Deng S, Huang K, Wang Y. Hippo pathway cooperates with ChREBP to regulate hepatic glucose utilization. Biochem Biophys Res Commun. 2020;530(1):115–121. [PubMed] [Google Scholar]

143. Sanjaya A, Goenawan H, Setiawan I, Gunadi J, Limyati Y, Lesmana R. Elaborating the physiological role of YAP as a Glucose metabolism regulator: a systematic review. Cell Physiol Biochem. 2021;55(2):193–205. [PubMed] [Google Scholar]

144. Gao C, Wang Y. YAP: the nexus between metabolism and cardiac remodeling. J Clin Investig. 2022;132(6). [PMC free article] [PubMed] [Google Scholar]

145. Cox A, Tsomides A, Yimlamai D, etal. Yap regulates glucose utilization and sustains nucleotide synthesis to enable organ growth. EMBO J. 2018;37(22). [PMC free article] [PubMed] [Google Scholar]

146. Hu Y, Shin D, Pan H, etal. YAP suppresses gluconeogenic gene expression through PGC1α. Hepatology (Baltimore, Md). 2017;66(6):2029–2041. [PMC free article] [PubMed] [Google Scholar]

147. Zheng X, Han H, Liu G, etal. LncRNA wires up Hippo and Hedgehog signaling to reprogramme glucose metabolism. EMBO J. 2017;36(22):3325–3335. [PMC free article] [PubMed] [Google Scholar]

148. White SM, Avantaggiati ML, Nemazanyy I, etal. YAP/TAZ inhibition induces metabolic and signaling rewiring resulting in targetable vulnerabilities in NF2‐deficient tumor cells. Dev Cell. 2019;49(3):425–443.e9. [PMC free article] [PubMed] [Google Scholar]

149. Xu S, Liu Y, Hu R, etal. TAZ inhibits glucocorticoid receptor and coordinates hepatic glucose homeostasis in normal physiological states. eLife. 2021;10. [PMC free article] [PubMed] [Google Scholar]

150. Jeong M, Kim H, Lee G, Won H, Yoon D, Hwang E. TAZ promotes PDX1‐mediated insulinogenesis. Cell Mol Life Sci. 2022;79(3):186. [PMC free article] [PubMed] [Google Scholar]

151. Jeon H, Choi J, Kraaier L, etal. Airway secretory cell fate conversion via YAP‐mTORC1‐dependent essential amino acid metabolism. EMBO J. 2022:e109365. [PMC free article] [PubMed] [Google Scholar]

152. Park YY, Sohn BH, Johnson RL, etal. Yes‐associated protein 1 and transcriptional coactivator with PDZ‐binding motif activate the mammalian target of rapamycin complex 1 pathway by regulating amino acid transporters in hepatocellular carcinoma. Hepatology. 2016;63(1):159–172. [PMC free article] [PubMed] [Google Scholar]

153. Wu Q, Li J, Sun S, etal. YAP/TAZ‐mediated activation of serine metabolism and methylation regulation is critical for LKB1‐deficient breast cancer progression. Biosci Rep. 2017;37(5). [PMC free article] [PubMed] [Google Scholar]

154. Bertero T, Oldham W, Cottrill K, etal. Vascular stiffness mechanoactivates YAP/TAZ‐dependent glutaminolysis to drive pulmonary hypertension. J Clin Investig. 2016;126(9):3313–3335. [PMC free article] [PubMed] [Google Scholar]

155. Yang C, Stampouloglou E, Kingston N, Zhang L, Monti S, Varelas X. Glutamine‐utilizing transaminases are a metabolic vulnerability of TAZ/YAP‐activated cancer cells. EMBO Rep. 2018;19(6). [PMC free article] [PubMed] [Google Scholar]

156. Edwards D, Ngwa V, Wang S, etal. The receptor tyrosine kinase EphA2 promotes glutamine metabolism in tumors by activating the transcriptional coactivators YAP and TAZ. Sci Signal. 2017;10(508). [PMC free article] [PubMed] [Google Scholar]

157. Du K, Hyun J, Premont RT, etal. Hedgehog‐YAP signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells. Gastroenterology. 2018;154(5):1465–1479.e13. [PMC free article] [PubMed] [Google Scholar]

158. Watt K, Henstridge D, Ziemann M, etal. Yap regulates skeletal muscle fatty acid oxidation and adiposity in metabolic disease. Nat Commun. 2021;12(1):2887. [PMC free article] [PubMed] [Google Scholar]

159. Yang W, Lin C, Wu J, etal. The Hippo pathway effector YAP promotes ferroptosis via the E3 ligase SKP2. Mol Cancer Res. 2021;19(6):1005–1014. [PMC free article] [PubMed] [Google Scholar]

160. Qin Y, Pei Z, Feng Z, etal. Oncogenic activation of YAP signaling sensitizes ferroptosis of hepatocellular carcinoma via ALOXE3‐mediated lipid peroxidation accumulation. Front Cell Dev Biol. 2021;9:751593. [PMC free article] [PubMed] [Google Scholar]

161. Tharp K, Kang M, Timblin G, etal. Actomyosin‐mediated tension orchestrates uncoupled respiration in adipose tissues. Cell Metab. 2018;27(3):602–615.e4. [PMC free article] [PubMed] [Google Scholar]

162. Cox A, Hwang K, Brown K, etal. Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth. Nat Cell Biol. 2016;18(8):886–896. [PMC free article] [PubMed] [Google Scholar]

163. Wang Q, Liang N, Yang T, etal. DNMT1‐mediated methylation of BEX1 regulates stemness and tumorigenicity in liver cancer. J Hepatol. 2021;75(5):1142–1153. [PubMed] [Google Scholar]

164. Jeong SH, Kim HB, Kim MC, etal. Hippo‐mediated suppression of IRS2/AKT signaling prevents hepatic steatosis and liver cancer. J Clin Invest. 2018;128(3):1010–1025. [PMC free article] [PubMed] [Google Scholar]

165. Zhu H, Yan F, Yuan T, etal. USP10 promotes proliferation of hepatocellular carcinoma by deubiquitinating and stabilizing YAP/TAZ. Cancer Res. 2020;80(11):2204–2216. [PubMed] [Google Scholar]

166. Bisso A, Filipuzzi M, Gamarra Figueroa G, etal. Cooperation between MYC and β‐catenin in liver tumorigenesis requires Yap/Taz. Hepatology (Baltimore, Md). 2020;72(4):1430–1443. [PubMed] [Google Scholar]

167. Garoffolo G, Casaburo M, Amadeo F, etal. Reduction of cardiac fibrosis by interference with YAP‐dependent transactivation. Circ Res. 2022;131(3):239–257. [PubMed] [Google Scholar]

168. Cho K, Ro S, Lee H, etal. YAP/TAZ suppress drug penetration into hepatocellular carcinoma through stromal activation. Hepatology (Baltimore, Md). 2021;74(5):2605–2621. [PubMed] [Google Scholar]

169. Gao R, Kalathur R, Coto‐Llerena M, etal. YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med. 2021;13(12):e14351. [PMC free article] [PubMed] [Google Scholar]

170. Kai L, Zhoumiao C, Shaohua X, etal. The lymph node ratio predicts cancer‐specific survival of node‐positive non‐small cell lung cancer patients: a population‐based SEER analysis. J Cardiothorac Surg. 2021;16(1):13. [PMC free article] [PubMed] [Google Scholar]

171. Lau A, Curtis S, Fillmore C, etal. Tumor‐propagating cells and Yap/Taz activity contribute to lung tumor progression and metastasis. EMBO J. 2014;33(5):468–481. [PMC free article] [PubMed] [Google Scholar]

172. Lo Sardo F, Pulito C, Sacconi A, etal. YAP/TAZ and EZH2 synergize to impair tumor suppressor activity of TGFBR2 in non‐small cell lung cancer. Cancer Lett. 2021;500:51–63. [PubMed] [Google Scholar]

173. Zhu B, Finch‐Edmondson M, Leong K, etal. LncRNA SFTA1P mediates positive feedback regulation of the Hippo‐YAP/TAZ signaling pathway in non‐small cell lung cancer. Cell Death Discov. 2021;7(1):369. [PMC free article] [PubMed] [Google Scholar]

174. Song J, Xie L, Zhang X, etal. Role of YAP in lung cancer resistance to cisplatin. Oncol Lett. 2018;16(3):3949–3954. [PMC free article] [PubMed] [Google Scholar]

175. Xu J, Zhu G, Cao D, Pan H, Li Y. Gossypol overcomes EGFR‐TKIs resistance in non‐small cell lung cancer cells by targeting YAP/TAZ and EGFR. Biomed Pharmacother. 2019;115:108860. [PubMed] [Google Scholar]

176. Wei C, Wang Y, Li X. The role of Hippo signal pathway in breast cancer metastasis. Onco Targets Ther. 2018;11:2185–2193. [PMC free article] [PubMed] [Google Scholar]

177. Nagini S. Breast cancer: current molecular therapeutic targets and new players. Anticancer Agents Med Chem. 2017;17(2):152–163. [PubMed] [Google Scholar]

178. Zhao W, Wang M, Cai M, etal. Transcriptional co‐activators YAP/TAZ: potential therapeutic targets for metastatic breast cancer. Biomed Pharmacother. 2021;133:110956. [PubMed] [Google Scholar]

179. Lamar J, Stern P, Liu H, Schindler J, Jiang Z, Hynes R. The Hippo pathway target, YAP, promotes metastasis through its TEAD‐interaction domain. Proc Natl Acad Sci USA. 2012;109(37):E2441‐E2450. [PMC free article] [PubMed] [Google Scholar]

180. Bartucci M, Dattilo R, Moriconi C, etal. TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene. 2015;34(6):681–690. [PubMed] [Google Scholar]

181. Liu J, Ye L, Li Q, etal. Synaptopodin‐2 suppresses metastasis of triple‐negative breast cancer via inhibition of YAP/TAZ activity. J Pathol. 2018;244(1):71–83. [PubMed] [Google Scholar]

182. Li M, Li A, Zhou S, Lv H, Yang W. SPAG5 upregulation contributes to enhanced c‐MYC transcriptional activity via interaction with c‐MYC binding protein in triple‐negative breast cancer. J Hematol Oncol. 2019;12(1):14. [PMC free article] [PubMed] [Google Scholar]

183. Canu V, Donzelli S, Sacconi A, etal. Aberrant transcriptional and post‐transcriptional regulation of SPAG5, a YAP‐TAZ‐TEAD downstream effector, fuels breast cancer cell proliferation. Cell Death Differ. 2021;28(5):1493–1511. [PMC free article] [PubMed] [Google Scholar]

184. Yuan J, Ding N, Xiao Z. The Hippo transducer YAP/TAZ as a biomarker of therapeutic response and prognosis in trastuzumab‐based neoadjuvant therapy treated HER2‐positive breast cancer patients. Front Pharmacol. 2020;11:537265. [PMC free article] [PubMed] [Google Scholar]

185. Kim Y, Jang S, Hong S, etal. Knockdown of YAP/TAZ sensitizes tamoxifen‐resistant MCF7 breast cancer cells. Biochem Biophys Res Commun. 2022;601:73–78. [PubMed] [Google Scholar]

186. Wang Z, Liu P, Zhou X, etal. Endothelin promotes colorectal tumorigenesis by activating YAP/TAZ. Cancer Res. 2017;77(9):2413–2423. [PMC free article] [PubMed] [Google Scholar]

187. Ma H, Wang J, Zhao X, etal. Periostin promotes colorectal tumorigenesis through integrin‐FAK‐Src pathway‐mediated YAP/TAZ activation. Cell Reports. 2020;30(3):793–806.e6. [PubMed] [Google Scholar]

188. OuYang C, Xie Y, Fu Q, Xu G. SYNPO2 suppresses hypoxia‐induced proliferation and migration of colorectal cancer cells by regulating YAP‐KLF5 axis. Tissue Cell. 2021;73:101598. [PubMed] [Google Scholar]

189. Jiang Y, Li T, Wu Y, etal. GPR39 overexpression in OSCC promotes YAP‐sustained malignant progression. J Dental Res. 2020;99(8):949–958. [PubMed] [Google Scholar]

190. García‐Escudero R, Segrelles C, Dueñas M, etal. Overexpression of PIK3CA in head and neck squamous cell carcinoma is associated with poor outcome and activation of the YAP pathway. Oral Oncol. 2018;79:55–63. [PubMed] [Google Scholar]

191. Fan R, Kim N, Gumbiner B. Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3‐kinase and phosphoinositide‐dependent kinase‐1. Proc Natl Acad Sci USA. 2013;110(7):2569–2574. [PMC free article] [PubMed] [Google Scholar]

192. Martin D, Degese M, Vitale‐Cross L, etal. Assembly and activation of the Hippo signalome by FAT1 tumor suppressor. Nat Commun. 2018;9(1):2372. [PMC free article] [PubMed] [Google Scholar]

193. Choi W, Kim J, Park J, etal. YAP/TAZ initiates gastric tumorigenesis via upregulation of MYC. Cancer Res. 2018;78(12):3306–3320. [PubMed] [Google Scholar]

194. Liu Y, Lin W, Dong Y, etal. Long noncoding RNA HCG18 up‐regulates the expression of WIPF1 and YAP/TAZ by inhibiting miR‐141‐3p in gastric cancer. Cancer Med. 2020;9(18):6752–6765. [PMC free article] [PubMed] [Google Scholar]

195. Gopal U, Mowery Y, Young K, Pizzo S. Targeting cell surface GRP78 enhances pancreatic cancer radiosensitivity through YAP/TAZ protein signaling. J Biol Chem. 2019;294(38):13939–13952. [PMC free article] [PubMed] [Google Scholar]

196. Santoro R, Zanotto M, Carbone C, Piro G, Tortora G, Melisi D. MEKK3 sustains EMT and stemness in pancreatic cancer by regulating YAP and TAZ transcriptional activity. Anticancer Res. 2018;38(4):1937–1946. [PubMed] [Google Scholar]

197. Hao F, Xu Q, Zhao Y, etal. Insulin receptor and GPCR crosstalk stimulates YAP via PI3K and PKD in pancreatic cancer cells. Mol Cancer Res. 2017;15(7):929–941. [PMC free article] [PubMed] [Google Scholar]

198. Ji J, Xu R, Zhang X, etal. Actin like‐6A promotes glioma progression through stabilization of transcriptional regulators YAP/TAZ. Cell Death & Disease. 2018;9(5):517. [PMC free article] [PubMed] [Google Scholar]

199. Lee S, Kang H, Shin E, Jeon J, Youn H, Youn B. BEX1 and BEX4 induce GBM progression through regulation of actin polymerization and activation of YAP/TAZ signaling. Int J Mol Sci. 2021;22(18). [PMC free article] [PubMed] [Google Scholar]

200. Roth GA, Mensah GA, CO Johnson, etal. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982–3021. [PMC free article] [PubMed] [Google Scholar]

201. Zhu Y, Xian X, Wang Z, etal. Research progress on the relationship between atherosclerosis and inflammation. Biomolecules. 2018;8(3). [PMC free article] [PubMed] [Google Scholar]

202. Orecchioni M, Kobiyama K, Winkels H, etal. Olfactory receptor 2 in vascular macrophages drives atherosclerosis by NLRP3‐dependent IL‐1 production. Science. 2022;375(6577):214–221. [PMC free article] [PubMed] [Google Scholar]

203. Wang D, Zhang Y, Xu X, etal. YAP promotes the activation of NLRP3 inflammasome via blocking K27‐linked polyubiquitination of NLRP3. Nat Commun. 2021;12(1):2674. [PMC free article] [PubMed] [Google Scholar]

204. Yu H, Hou Z, Chen N, etal. Yes‐associated protein contributes to magnesium alloy‐derivedinflammation in endothelial cells. Regen Biomater. 2022;9:rbac002. [PMC free article] [PubMed] [Google Scholar]

205. Jia M, Li Q, Guo J, etal. Deletion of BACH1 attenuates atherosclerosis by reducing endothelial inflammation. Circ Res. 2022;130(7):1038–1055. [PubMed] [Google Scholar]

206. Chao ML, Luo S, Zhang C, etal. S‐nitrosylation‐mediated coupling of G‐protein alpha‐2 with CXCR5 induces Hippo/YAP‐dependent diabetes‐accelerated atherosclerosis. Nat Commun. 2021;12(1):4452. [PMC free article] [PubMed] [Google Scholar]

207. Niu N, Xu S, Xu Y, Little PJ, Jin ZG. Targeting mechanosensitive transcription factors in atherosclerosis. Trends Pharmacol Sci. 2019;40(4):253–266. [PMC free article] [PubMed] [Google Scholar]

208. Wang KC, Yeh YT, Nguyen P, etal. Flow‐dependent YAP/TAZ activities regulate endothelial phenotypes and atherosclerosis. Proc Natl Acad Sci USA. 2016;113(41):11525–11530. [PMC free article] [PubMed] [Google Scholar]

209. Xu S, Koroleva M, Yin M, Jin ZG. Atheroprotective laminar flow inhibits Hippo pathway effector YAP in endothelial cells. Transl Res. 2016;176:18–28.e2. [PMC free article] [PubMed] [Google Scholar]

210. Wang L, Luo JY, Li B, etal. Integrin‐YAP/TAZ‐JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature. 2016;540(7634):579–582. [PubMed] [Google Scholar]

211. Liu M, Yan M, Lv H, etal. Macrophage K63‐linked ubiquitination of YAP promotes its nuclear localization and exacerbates atherosclerosis. Cell Rep. 2020;32(5):107990. [PubMed] [Google Scholar]

212. Liu D, Lv H, Liu Q, etal. Atheroprotective effects of methotrexate via the inhibition of YAP/TAZ under disturbed flow. J Transl Med. 2019;17(1):378. [PMC free article] [PubMed] [Google Scholar]

213. Yang Y, Pei K, Zhang Q, etal. Salvianolic acid B ameliorates atherosclerosis via inhibiting YAP/TAZ/JNK signaling pathway in endothelial cells and pericytes. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(10):158779. [PubMed] [Google Scholar]

214. Zhao H, Liu M, Liu H, Suo R, Lu C. Naringin protects endothelial cells from apoptosis and inflammation by regulating the Hippo‐YAP Pathway. Biosci Rep. 2020;40(3). [PMC free article] [PubMed] [Google Scholar]

215. Garoffolo G, Pesce M. From dissection of fibrotic pathways to assessment of drug interactions to reduce cardiac fibrosis and heart failure. Curr Res Pharmacol Drug Discov. 2021;2:100036. [PMC free article] [PubMed] [Google Scholar]

216. Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res. 2016;119(1):91–112. [PMC free article] [PubMed] [Google Scholar]

217. Francisco J, Zhang Y, Nakada Y, etal. AAV‐mediated YAP expression in cardiac fibroblasts promotes inflammation and increases fibrosis. Sci Rep. 2021;11(1):10553. [PMC free article] [PubMed] [Google Scholar]

218. Sharifi‐Sanjani M, Berman M, Goncharov D, etal. Yes‐associated protein (Yap) is up‐regulated in heart failure and promotes cardiac fibroblast proliferation. Int J Mol Sci. 2021;22(11). [PMC free article] [PubMed] [Google Scholar]

219. Niu L, Jia Y, Wu M, etal. Matrix stiffness controls cardiac fibroblast activation through regulating YAP via AT(1) R. J Cell Physiol. 2020;235(11):8345–8357. [PubMed] [Google Scholar]

220. Mia MM, Cibi DM, Ghani S, etal. Loss of Yap/Taz in cardiac fibroblasts attenuates adverse remodelling and improves cardiac function. Cardiovasc Res. 2022;118(7):1785–1804. [PubMed] [Google Scholar]

221. Francisco J, Zhang Y, Jeong JI, etal. Blockade of fibroblast YAP attenuates cardiac fibrosis and dysfunction through MRTF‐A inhibition. JACC Basic Transl Sci. 2020;5(9):931–945. [PMC free article] [PubMed] [Google Scholar]

222. Wu P, Liu Z, Zhao T, etal. Lovastatin attenuates angiotensin II induced cardiovascular fibrosis through the suppression of YAP/TAZ signaling. Biochem Biophys Res Commun. 2019;512(4):736–741. [PubMed] [Google Scholar]

223. Feng Y, Zhao G, Xu M, etal. rGO/silk fibroin‐modified nanofibrous patches prevent ventricular remodeling via Yap/Taz‐TGFβ1/Smads signaling after myocardial infarction in rats. Front Cardiovasc Med. 2021;8:718055. [PMC free article] [PubMed] [Google Scholar]

224. Yu G, Tzouvelekis A, Wang R, etal. Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function. Nat Med. 2018;24(1):39–49. [PMC free article] [PubMed] [Google Scholar]

225. Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet. 2017;389(10082):1941–1952. [PubMed] [Google Scholar]

226. Zhu T, Ma Z, Wang H, etal. YAP/TAZ affects the development of pulmonary fibrosis by regulating multiple signaling pathways. Mol Cell Biochem. 2020;475(1‐2):137–149. [PubMed] [Google Scholar]

227. Mora AL, Rojas M, Pardo A, Selman M. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age‐related disease. Nat Rev Drug Discov. 2017;16(11):755–772. [PubMed] [Google Scholar]

228. Noor S, Nawaz S, Chaudhuri N. Real‐world study analysing progression and survival of patients with idiopathic pulmonary fibrosis with preserved lung function on antifibrotic treatment. Adv Ther. 2021;38(1):268–277. [PMC free article] [PubMed] [Google Scholar]

229. Dorey‐Stein ZL, Shapiro W, Zhao H, Cordova FC, Criner GJ, Galli JA. Effect of antifibrotic therapy in patients with idiopathic pulmonary fibrosis undergoing lung transplant in the peri and post‐operative period. Respir Med. 2021;190:106599. [PubMed] [Google Scholar]

230. Gokey JJ, Sridharan A, Xu Y, etal. Active epithelial Hippo signaling in idiopathic pulmonary fibrosis. JCI Insight. 2018;3(6). [PMC free article] [PubMed] [Google Scholar]

231. Xu W, Song W, Wang YU, etal. Efficacy of YAP1‐gene knockdown to inhibit alveolar‐epithelial‐cell senescence and alleviate idiopathic pulmonary fibrosis (IPF). Cancer Genomics Proteomics. 2021;18(3 Suppl):451–459. [PMC free article] [PubMed] [Google Scholar]

232. Ren J, Crowley SD. Twist1: a double‐edged sword in kidney diseases. Kidney Dis (Basel). 2020;6(4):247–257. [PMC free article] [PubMed] [Google Scholar]

233. Chen Y, Zhao X, Sun J, etal. YAP1/Twist promotes fibroblast activation and lung fibrosis that conferred by miR‐15a loss in IPF. Cell Death Differ. 2019;26(9):1832–1844. [PMC free article] [PubMed] [Google Scholar]

234. Zhao X, Sun J, Chen Y, etal. lncRNA PFAR promotes lung fibroblast activation and fibrosis by targeting miR‐138 to regulate the YAP1‐twist axis. Mol Ther. 2018;26(9):2206–2217. [PMC free article] [PubMed] [Google Scholar]

235. Wang YC, Xie H, Zhang YC, etal. Exosomal miR‐107 antagonizes profibrotic phenotypes of pericytes by targeting a pathway involving HIF‐1α/Notch1/PDGFRβ/YAP1/Twist1 axis in vitro. Am J Physiol Heart Circ Physiol. 2021;320(2):H520‐h534. [PubMed] [Google Scholar]

236. Aravamudhan A, Haak AJ, Choi KM, etal. TBK1 regulates YAP/TAZ and fibrogenic fibroblast activation. Am J Physiol Lung Cell Mol Physiol. 2020;318(5):L852‐l863. [PMC free article] [PubMed] [Google Scholar]

237. Huang LS, Sudhadevi T, Fu P, etal. Sphingosine kinase 1/S1P signaling contributes to pulmonary fibrosis by activating Hippo/YAP pathway and mitochondrial reactive oxygen species in lung fibroblasts. Int J Mol Sci. 2020;21(6). [PMC free article] [PubMed] [Google Scholar]

238. Zmajkovicova K, Menyhart K, Bauer Y, etal. The antifibrotic activity of prostacyclin receptor agonism is mediated through inhibition of YAP/TAZ. Am J Respir Cell Mol Biol. 2019;60(5):578–591. [PubMed] [Google Scholar]

239. Haak AJ, Kostallari E, Sicard D, etal. Selective YAP/TAZ inhibition in fibroblasts via dopamine receptor D1 agonism reverses fibrosis. Sci Transl Med. 2019;11(516). [PMC free article] [PubMed] [Google Scholar]

240. Santos DM, Pantano L, Pronzati G, etal. Screening for YAP inhibitors identifies statins as modulators of fibrosis. Am J Respir Cell Mol Biol. 2020;62(4):479–492. [PMC free article] [PubMed] [Google Scholar]

241. Sinha B, Wu Q, Li W, etal. Protection of melatonin in experimental models of newborn hypoxic‐ischemic brain injury through MT1 receptor. J Pineal Res. 2018;64(1). [PubMed] [Google Scholar]

242. Sharan K, Lewis K, Furukawa T, Yadav VK. Regulation of bone mass through pineal‐derived melatonin‐MT2 receptor pathway. J Pineal Res. 2017;63(2). [PMC free article] [PubMed] [Google Scholar]

243. Zhao X, Sun J, Su W, etal. Melatonin protects against lung fibrosis by regulating the Hippo/YAP pathway. Int J Mol Sci. 2018;19(4). [PMC free article] [PubMed] [Google Scholar]

244. Li C, Li Q, Mei Q, Lu T. Pharmacological effects and pharmaco*kinetic properties of icariin, the major bioactive component in Herba Epimedii. Life Sci. 2015;126:57–68. [PubMed] [Google Scholar]

245. Du W, Tang Z, Yang F, Liu X, Dong J. Icariin attenuates bleomycin‐induced pulmonary fibrosis by targeting Hippo/YAP pathway. Biomed Pharmacother. 2021;143:112152. [PubMed] [Google Scholar]

246. Huang SY, Cui HS, Lyu MS, Huang GR, Hou D, Yu MX. Efficacy of traditional Chinese medicine injections for treating idiopathic pulmonary fibrosis: A systematic review and network meta‐analysis. PLoS One. 2022;17(7):e0272047. [PMC free article] [PubMed] [Google Scholar]

247. Stevens AJ, CampbellJL, Jr., Travis KZ, etal. Paraquat pharmaco*kinetics in primates and extrapolation to humans. Toxicol Appl Pharmacol. 2021;417:115463. [PubMed] [Google Scholar]

248. Li H, Kan B, Song L, Liu Y, Jian X. Role of the Hippo signaling pathway in safflower yellow pigment treatment of paraquat‐induced pulmonary fibrosis. J Int Med Res. 2020;48(9):300060520905425. [PMC free article] [PubMed] [Google Scholar]

249. Roehlen N, Crouchet E, Baumert TF. Liver fibrosis: mechanistic concepts and therapeutic perspectives. Cells. 2020;9(4). [PMC free article] [PubMed] [Google Scholar]

250. Chen L, Xia S, Wang S, etal. Naringenin is a potential immunomodulator for inhibiting liver fibrosis by inhibiting the cGAS‐STING pathway. J Clin Transl Hepatol. 2023;11(1):26–37. [PMC free article] [PubMed] [Google Scholar]

251. Caligiuri A, Gentilini A, Pastore M, Gitto S, Marra F. Cellular and molecular mechanisms underlying liver fibrosis regression. Cells. 2021;10(10). [PMC free article] [PubMed] [Google Scholar]

252. Smith A, Baumgartner K, Bositis C. Cirrhosis: diagnosis and management. Am Fam Physician. 2019;100(12):759–770. [PubMed] [Google Scholar]

253. Aydın MM, Akçalı KC. Liver fibrosis. Turk J Gastroenterol. 2018;29(1):14–21. [PMC free article] [PubMed] [Google Scholar]

254. Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol. 2021;18(3):151–166. [PubMed] [Google Scholar]

255. Dewidar B, Meyer C, Dooley S, Meindl‐Beinker AN. TGF‐β in hepatic stellate cell activation and liver fibrogenesis—updated 2019. Cells. 2019;8(11). [PMC free article] [PubMed] [Google Scholar]

256. Liu N, Feng J, Lu X, etal. Isorhamnetin inhibits liver fibrosis by reducing autophagy and inhibiting extracellular matrix formation via the TGF‐β1/Smad3 and TGF‐β1/p38 MAPK pathways. Mediators Inflamm. 2019;2019:6175091. [PMC free article] [PubMed] [Google Scholar]

257. Jin H, Lian N, Zhang F, etal. Inhibition of YAP signaling contributes to senescence of hepatic stellate cells induced by tetramethylpyrazine. Eur J Pharm Sci. 2017;96:323–333. [PubMed] [Google Scholar]

258. Yu HX, Yao Y, Bu FT, etal. Blockade of YAP alleviates hepatic fibrosis through accelerating apoptosis and reversion of activated hepatic stellate cells. Mol Immunol. 2019;107:29–40. [PubMed] [Google Scholar]

259. Dai Y, Hao P, Sun Z, etal. Liver knockout YAP gene improved insulin resistance‐induced hepatic fibrosis. J Endocrinol. 2021;249(2):149–161. [PubMed] [Google Scholar]

260. Liu Y, Lu T, Zhang C, etal. Activation of YAP attenuates hepatic damage and fibrosis in liver ischemia‐reperfusion injury. J Hepatol. 2019;71(4):719–730. [PMC free article] [PubMed] [Google Scholar]

261. Davis JL, Kennedy C, Clerkin S, etal. Single‐cell multiomics reveals the complexity of TGFβ signalling to chromatin in iPSC‐derived kidney organoids. Commun Biol. 2022;5(1):1301. [PMC free article] [PubMed] [Google Scholar]

262. Zhang T, He X, Caldwell L, etal. NUAK1 promotes organ fibrosis via YAP and TGF‐β/SMAD signaling. Sci Transl Med. 2022;14(637):eaaz4028. [PubMed] [Google Scholar]

263. Alsamman S, Christenson SA, Yu A, etal. Targeting acid ceramidase inhibits YAP/TAZ signaling to reduce fibrosis in mice. Sci Transl Med. 2020;12(557). [PMC free article] [PubMed] [Google Scholar]

264. Chowdhury K, Huang M, Kim HG, Dong XC. Sirtuin 6 protects against hepatic fibrogenesis by suppressing the YAP and TAZ function. Faseb J. 2022;36(10):e22529. [PMC free article] [PubMed] [Google Scholar]

265. Ma T, Cheng H, Li T, etal. N‐Acetyl‐l‐tryptophan inhibits CCl(4)‐induced hepatic fibrogenesis via regulating TGF‐β1/SMAD and Hippo/YAP1 signal. Bioorg Chem. 2022;126:105899. [PubMed] [Google Scholar]

266. Salloum S, Jeyarajan AJ, Kruger AJ, etal. Fatty acids activate the transcriptional coactivator YAP1 to promote liver fibrosis via p38 mitogen‐activated protein kinase. Cell Mol Gastroenterol Hepatol. 2021;12(4):1297–1310. [PMC free article] [PubMed] [Google Scholar]

267. Zhao W, Zhang X, Hou M, etal. Traditional Chinese medicine Yiqi Huoxue recipe attenuates hepatic fibrosis via YAP/TAZ signaling. Histol Histopathol. 2021;36(9):967–979. [PubMed] [Google Scholar]

268. Ge M, Liu H, Zhang Y, etal. The anti‐hepatic fibrosis effects of dihydrotanshinone I are mediated by disrupting the yes‐associated protein and transcriptional enhancer factor D2 complex and stimulating autophagy. Br J Pharmacol. 2017;174(10):1147–1160. [PMC free article] [PubMed] [Google Scholar]

269. Hosseini H, Teimouri M, Shabani M, etal. Resveratrol alleviates non‐alcoholic fatty liver disease through epigenetic modification of the Nrf2 signaling pathway. Int J Biochem Cell Biol. 2020;119:105667. [PubMed] [Google Scholar]

270. Zhu L, Mou Q, Wang Y, Zhu Z, Cheng M. Resveratrol contributes to the inhibition of liver fibrosis by inducing autophagy via the microRNA‑20a‑mediated activation of the PTEN/PI3K/AKT signaling pathway. Int J Mol Med. 2020;46(6):2035–2046. [PMC free article] [PubMed] [Google Scholar]

271. Li C, Zhang R, Zhan Y, Zheng J. Resveratrol inhibits hepatic stellate cell activation via the Hippo pathway. Mediators Inflamm. 2021;2021:3399357. [PMC free article] [PubMed] [Google Scholar]

272. Lee EH, Park KI, Kim KY, etal. Liquiritigenin inhibits hepatic fibrogenesis and TGF‐β1/Smad with Hippo/YAP signal. Phytomedicine. 2019;62:152780. [PubMed] [Google Scholar]

273. Perumal N, Perumal M, Halagowder D, Sivasithamparam N. Morin attenuates diethylnitrosamine‐induced rat liver fibrosis and hepatic stellate cell activation by co‐ordinated regulation of Hippo/Yap and TGF‐β1/Smad signaling. Biochimie. 2017;140:10–19. [PubMed] [Google Scholar]

274. Yang T, Wu E, Zhu X, etal. TKF, a mexicanolide‐type limonoid derivative, suppressed hepatic stellate cells activation and liver fibrosis through inhibition of the YAP/Notch3 pathway. Phytomedicine. 2022;107:154466. [PubMed] [Google Scholar]

275. Zhao Z, Tang Z, Zhang W, Liu J, Li B. Magnesium isoglycyrrhizinate protects against renal‑ischemia‑reperfusion injury in a rat model via anti‑inflammation, anti‑oxidation and anti‑apoptosis. Mol Med Rep. 2017;16(3):3627–3633. [PubMed] [Google Scholar]

276. Shan S, Liu Z, Liu Z, Zhang C, Song F. MitoQ alleviates carbon tetrachloride‐induced liver fibrosis in mice through regulating JNK/YAP pathway. Toxicol Res (Camb). 2022;11(5):852–862. [PMC free article] [PubMed] [Google Scholar]

277. Lu ZN, Niu WX, Zhang N, etal. Pantoprazole ameliorates liver fibrosis and suppresses hepatic stellate cell activation in bile duct ligation rats by promoting YAP degradation. Acta Pharmacol Sin. 2021;42(11):1808–1820. [PMC free article] [PubMed] [Google Scholar]

278. Pantami HA, Ahamad Bustamam MS, Lee SY, etal. Comprehensive GCMS and LC‐MS/MS metabolite profiling of Chlorella vulgaris. Mar Drugs. 2020;18(7). [PMC free article] [PubMed] [Google Scholar]

279. Mohseni R, Alavian SM, Sadeghabadi ZA, Heiat M. Therapeutic effects of Chlorella vulgaris on carbon tetrachloride induced liver fibrosis by targeting Hippo signaling pathway and AMPK/FOXO1 axis. Mol Biol Rep. 2021;48(1):117–126. [PubMed] [Google Scholar]

280. Kuppe C, Ibrahim MM, Kranz J, etal. Decoding myofibroblast origins in human kidney fibrosis. Nature. 2021;589(7841):281–286. [PMC free article] [PubMed] [Google Scholar]

281. Martínez‐Arias L, Panizo S, Alonso‐Montes C, etal. Effects of calcitriol and paricalcitol on renal fibrosis in CKD. Nephrol Dial Transplant. 2021;36(5):793–803. [PubMed] [Google Scholar]

282. Calle P, Hotter G. Macrophage phenotype and fibrosis in diabetic nephropathy. Int J Mol Sci. 2020;21(8). [PMC free article] [PubMed] [Google Scholar]

283. Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet. 2017;389(10075):1238–1252. [PubMed] [Google Scholar]

284. Chen PS, Li YP, Ni HF. Morphology and evaluation of renal fibrosis. Adv Exp Med Biol. 2019;1165:17–36. [PubMed] [Google Scholar]

285. Nogueira A, Pires MJ, Oliveira PA. Pathophysiological mechanisms of renal fibrosis: a review of animal models and therapeutic strategies. In Vivo. 2017;31(1):1–22. [PMC free article] [PubMed] [Google Scholar]

286. Li N, Wang Z, Gao F, Lei Y, Li Z. Melatonin ameliorates renal fibroblast‐myofibroblast transdifferentiation and renal fibrosis through miR‐21‐5p regulation. J Cell Mol Med. 2020;24(10):5615–5628. [PMC free article] [PubMed] [Google Scholar]

287. Imamura M, Moon JS, Chung KP, etal. RIPK3 promotes kidney fibrosis via AKT‐dependent ATP citrate lyase. JCI Insight. 2018;3(3). [PMC free article] [PubMed] [Google Scholar]

288. Liu H, Takagaki Y, Kumagai A, Kanasaki K, Koya D. The PKM2 activator TEPP‐46 suppresses kidney fibrosis via inhibition of the EMT program and aberrant glycolysis associated with suppression of HIF‐1α accumulation. J Diabetes Investig. 2021;12(5):697–709. [PMC free article] [PubMed] [Google Scholar]

289. Yuan Q, Tan RJ, Liu Y. Myofibroblast in kidney fibrosis: origin, activation, and regulation. Adv Exp Med Biol. 2019;1165:253–283. [PubMed] [Google Scholar]

290. Anorga S, Overstreet JM, Falke LL, etal. Deregulation of Hippo‐TAZ pathway during renal injury confers a fibrotic maladaptive phenotype. Faseb J. 2018;32(5):2644–2657. [PMC free article] [PubMed] [Google Scholar]

291. Chen J, Wang X, He Q, etal. YAP activation in renal proximal tubule cells drives diabetic renal interstitial fibrogenesis. Diabetes. 2020;69(11):2446–2457. [PMC free article] [PubMed] [Google Scholar]

292. Ren Y, Zhang Y, Wang L, etal. Selective targeting of vascular endothelial YAP activity blocks EndMT and ameliorates unilateral ureteral obstruction‐induced kidney fibrosis. ACS Pharmacol Transl Sci. 2021;4(3):1066–1074. [PMC free article] [PubMed] [Google Scholar]

293. Liang M, Yu M, Xia R, etal. Yap/Taz deletion in Gli(+) cell‐derived myofibroblasts attenuates fibrosis. J Am Soc Nephrol. 2017;28(11):3278–3290. [PMC free article] [PubMed] [Google Scholar]

294. Szeto SG, Narimatsu M, Lu M, etal. YAP/TAZ are mechanoregulators of TGF‐β‐Smad signaling and renal fibrogenesis. J Am Soc Nephrol. 2016;27(10):3117–3128. [PMC free article] [PubMed] [Google Scholar]

295. Jiang S, Gu L, Hu Y, etal. Inhibition of TRPC6 suppressed TGFβ‐induced fibroblast‐myofibroblast transdifferentiation in renal interstitial NRK‐49F cells. Exp Cell Res. 2022;421(1):113374. [PubMed] [Google Scholar]

296. Gui Y, Li J, Lu Q, etal. Yap/Taz mediates mTORC2‐stimulated fibroblast activation and kidney fibrosis. J Biol Chem. 2018;293(42):16364–16375. [PMC free article] [PubMed] [Google Scholar]

297. Feng Y, Liang Y, Zhu X, etal. The signaling protein Wnt5a promotes TGFβ1‐mediated macrophage polarization and kidney fibrosis by inducing the transcriptional regulators Yap/Taz. J Biol Chem. 2018;293(50):19290–19302. [PMC free article] [PubMed] [Google Scholar]

298. Chen X, Wanggou S, Bodalia A, etal. A feedforward mechanism mediated by mechanosensitive ion channel PIEZO1 and tissue mechanics promotes glioma aggression. Neuron. 2018;100(4):799–815.e7. [PubMed] [Google Scholar]

299. Fu Y, Wan P, Zhang J, etal. Targeting mechanosensitive piezo1 alleviated renal fibrosis through p38MAPK‐YAP pathway. Front Cell Dev Biol. 2021;9:741060. [PMC free article] [PubMed] [Google Scholar]

300. Yang T, Heng C, Zhou Y, etal. Targeting mammalian serine/threonine‐protein kinase 4 through Yes‐associated protein/TEA domain transcription factor‐mediated epithelial‐mesenchymal transition ameliorates diabetic nephropathy orchestrated renal fibrosis. Metabolism. 2020;108:154258. [PubMed] [Google Scholar]

301. Xu D, Chen PP, Zheng PQ, etal. KLF4 initiates sustained YAP activation to promote renal fibrosis in mice after ischemia‐reperfusion kidney injury. Acta Pharmacol Sin. 2021;42(3):436–450. [PMC free article] [PubMed] [Google Scholar]

302. Song J, Wang T, Chi X, etal. Kindlin‐2 inhibits the Hippo signaling pathway by promoting degradation of MOB1. Cell Rep. 2019;29(11):3664–3677.e5. [PubMed] [Google Scholar]

303. Zhang J, Xu Q, Ren F, etal. Inhibition of YAP activation attenuates renal injury and fibrosis in angiotensin II hypertensive mice. Can J Physiol Pharmacol. 2021;99(10):1000–1006. [PubMed] [Google Scholar]

304. Patel S, Tang J, Overstreet JM, etal. Rac‐GTPase promotes fibrotic TGF‐β1 signaling and chronic kidney disease via EGFR, p53, and Hippo/YAP/TAZ pathways. Faseb J. 2019;33(9):9797–9810. [PMC free article] [PubMed] [Google Scholar]

305. Boivin D, Béliveau R. Subcellular distribution and membrane association of Rho‐related small GTP‐binding proteins in kidney cortex. Am J Physiol. 1995;269(2 Pt 2):F180‐F189. [PubMed] [Google Scholar]

306. Chen J, Harris RC. Interaction of the EGF receptor and the Hippo pathway in the diabetic kidney. J Am Soc Nephrol. 2016;27(6):1689–1700. [PMC free article] [PubMed] [Google Scholar]

307. Xing J, He YC, Wang KY, Wan PZ, Zhai XY. Involvement of YTHDF1 in renal fibrosis progression via up‐regulating YAP. Faseb J. 2022;36(2):e22144. [PubMed] [Google Scholar]

308. Li X, Zhang F, Qu L, etal. Identification of YAP1 as a novel downstream effector of the FGF2/STAT3 pathway in the pathogenesis of renal tubulointerstitial fibrosis. J Cell Physiol. 2021;236(11):7655–7671. [PubMed] [Google Scholar]

309. Jin J, Wang T, Park W, etal. Inhibition of Yes‐associated protein by verteporfin ameliorates unilateral ureteral obstruction‐induced renal tubulointerstitial inflammation and fibrosis. Int J Mol Sci. 2020;21(21). [PMC free article] [PubMed] [Google Scholar]

310. He M, Feng L, Chen Y, etal. Polydatin attenuates tubulointerstitial fibrosis in diabetic kidney disease by inhibiting YAP expression and nuclear translocation. Front Physiol. 2022;13:927794. [PMC free article] [PubMed] [Google Scholar]

311. Wang TT, Wu LL, Wu J, etal. 14‐3‐3ζ inhibits maladaptive repair in renal tubules by regulating YAP and reduces renal interstitial fibrosis. Acta Pharmacol Sin. 2022;. 44(2):381‐392. [PMC free article] [PubMed] [Google Scholar]

312. Zhao K, He J, Zhang Y, etal. Activation of FXR protects against renal fibrosis via suppressing Smad3 expression. Sci Rep. 2016;6:37234. [PMC free article] [PubMed] [Google Scholar]

313. Li S, Ghoshal S, Sojoodi M, etal. The farnesoid X receptor agonist EDP‐305 reduces interstitial renal fibrosis in a mouse model of unilateral ureteral obstruction. Faseb J. 2019;33(6):7103–7112. [PMC free article] [PubMed] [Google Scholar]

314. Kim DH, Choi HI, Park JS, etal. Src‐mediated crosstalk between FXR and YAP protects against renal fibrosis. Faseb J. 2019;33(10):11109–11122. [PubMed] [Google Scholar]

315. Jin C, Wu P, Li L, Xu W, Qian H. Exosomes: emerging therapy delivery tools and biomarkers for kidney diseases. Stem Cells Int. 2021;2021:7844455. [PMC free article] [PubMed] [Google Scholar]

316. Liang M, Zhang D, Zheng D, He W, Jin J. Exosomes from miR‐374a‐5p‐modified mesenchymal stem cells inhibit the progression of renal fibrosis by regulating MAPK6/MK5/YAP axis. Bioengineered. 2022;13(2):4517–4527. [PMC free article] [PubMed] [Google Scholar]

317. Ji C, Zhang J, Zhu Y, etal. Exosomes derived from hucMSC attenuate renal fibrosis through CK1δ/β‐TRCP‐mediated YAP degradation. Cell Death Dis. 2020;11(5):327. [PMC free article] [PubMed] [Google Scholar]

318. Leach JP, Martin JF. Cardiomyocyte proliferation for therapeutic regeneration. Curr Cardiol Rep. 2018;20(8):63. [PubMed] [Google Scholar]

319. Cahill TJ, Choudhury RP, Riley PR. Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nat Rev Drug Discov. 2017;16(10):699–717. [PubMed] [Google Scholar]

320. He L, Nguyen NB, Ardehali R, Zhou B. Heart regeneration by endogenous stem cells and cardiomyocyte proliferation: controversy, fallacy, and progress. Circulation. 2020;142(3):275–291. [PMC free article] [PubMed] [Google Scholar]

321. Fu X, Khalil H, Kanisicak O, etal. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Invest. 2018;128(5):2127–2143. [PMC free article] [PubMed] [Google Scholar]

322. Halushka MK, Mitchell RN, Padera RF. Heart failure therapies: new strategies for old treatments and new treatments for old strategies. Cardiovasc Pathol. 2016;25(6):503–511. [PubMed] [Google Scholar]

323. Zebrowski DC, Jensen CH, Becker R, etal. Cardiac injury of the newborn mammalian heart accelerates cardiomyocyte terminal differentiation. Sci Rep. 2017;7(1):8362. [PMC free article] [PubMed] [Google Scholar]

324. González‐Rosa JM, Burns CE, Burns CG. Zebrafish heart regeneration: 15 years of discoveries. Regeneration (Oxf). 2017;4(3):105–123. [PMC free article] [PubMed] [Google Scholar]

325. Fan Q, Mao H, Angelini A, etal. Depletion of endothelial prolyl hydroxylase domain protein 2 and 3 promotes cardiomyocyte proliferation and prevents ventricular failure induced by myocardial infarction. Circulation. 2019;140(5):440–442. [PMC free article] [PubMed] [Google Scholar]

326. Braga L, Ali H, Secco I, Giacca M. Non‐coding RNA therapeutics for cardiac regeneration. Cardiovasc Res. 2021;117(3):674–693. [PMC free article] [PubMed] [Google Scholar]

327. Li J, Yang KY, Tam RCY, etal. Regulatory T‐cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner. Theranostics. 2019;9(15):4324–4341. [PMC free article] [PubMed] [Google Scholar]

328. Martin JF, Perin EC, Willerson JT. Direct stimulation of cardiogenesis: a new paradigm for treating heart disease. Circ Res. 2017;121(1):13–15. [PMC free article] [PubMed] [Google Scholar]

329. Singh AP, Umbarkar P, Guo Y, Force T, Gupte M, Lal H. Inhibition of GSK‐3 to induce cardiomyocyte proliferation: a recipe for in situ cardiac regeneration. Cardiovasc Res. 2019;115(1):20–30. [PMC free article] [PubMed] [Google Scholar]

330. Monroe TO, Hill MC, Morikawa Y, etal. YAP partially reprograms chromatin accessibility to directly induce adult cardiogenesis in vivo. Dev Cell. 2019;48(6):765–779.e7. [PMC free article] [PubMed] [Google Scholar]

331. Lin Z, von Gise A, Zhou P, etal. Cardiac‐specific YAP activation improves cardiac function and survival in an experimental murine MI model. Circ Res. 2014;115(3):354–363. [PMC free article] [PubMed] [Google Scholar]

332. von Gise A, Lin Z, Schlegelmilch K, etal. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci USA. 2012;109(7):2394–2399. [PMC free article] [PubMed] [Google Scholar]

333. Yue P, Zhang Y, Liu L, etal. Yap1 modulates cardiomyocyte hypertrophy via impaired mitochondrial biogenesis in response to chronic mechanical stress overload. Theranostics. 2022;12(16):7009–7031. [PMC free article] [PubMed] [Google Scholar]

334. Vacante F, Denby L, Sluimer JC, Baker AH. The function of miR‐143, miR‐145 and the MiR‐143 host gene in cardiovascular development and disease. Vascul Pharmacol. 2019;112:24–30. [PMC free article] [PubMed] [Google Scholar]

335. Gao F, Kataoka M, Liu N, etal. Therapeutic role of miR‐19a/19b in cardiac regeneration and protection from myocardial infarction. Nat Commun. 2019;10(1):1802. [PMC free article] [PubMed] [Google Scholar]

336. Yanni J, D'Souza A, Wang Y, etal. Silencing miR‐370‐3p rescues funny current and sinus node function in heart failure. Sci Rep. 2020;10(1):11279. [PMC free article] [PubMed] [Google Scholar]

337. Torrini C, Cubero RJ, Dirkx E, etal. Common regulatory pathways mediate activity of MicroRNAs inducing cardiomyocyte proliferation. Cell Rep. 2019;27(9):2759–2771.e5. [PMC free article] [PubMed] [Google Scholar]

338. Nugroho AB, Stafford N, Zi M, etal. Micro RNA‐411 expression improves cardiac phenotype following myocardial infarction in mice. JACC Basic Transl Sci. 2022;7(9):859–875. [PMC free article] [PubMed] [Google Scholar]

339. Sahoo BR. Structure of fish Toll‐like receptors (TLR) and NOD‐like receptors (NLR). Int J Biol Macromol. 2020;161:1602–1617. [PMC free article] [PubMed] [Google Scholar]

340. Wang X, Ha T, Liu L, etal. TLR3 mediates repair and regeneration of damaged neonatal heart through glycolysis dependent YAP1 regulated miR‐152 expression. Cell Death Differ. 2018;25(5):966–982. [PMC free article] [PubMed] [Google Scholar]

341. Ma WY, Song RJ, Xu BB, etal. Melatonin promotes cardiomyocyte proliferation and heart repair in mice with myocardial infarction via miR‐143‐3p/Yap/Ctnnd1 signaling pathway. Acta Pharmacol Sin. 2021;42(6):921–931. [PMC free article] [PubMed] [Google Scholar]

342. Gong R, Wang X, Li H, etal. Loss of m(6)A methyltransferase METTL3 promotes heart regeneration and repair after myocardial injury. Pharmacol Res. 2021;174:105845. [PubMed] [Google Scholar]

343. Cai B, Ma W, Wang X, etal. Targeting LncDACH1 promotes cardiac repair and regeneration after myocardium infarction. Cell Death Differ. 2020;27(7):2158–2175. [PMC free article] [PubMed] [Google Scholar]

344. Kametani Y, Tanaka S, Wada Y, etal. Yes‐associated protein activation potentiates glycogen synthase kinase‐3 inhibitor‐induced proliferation of neonatal cardiomyocytes and iPS cell‐derived cardiomyocytes. J Cell Physiol. 2022;237(5):2539–2549. [PMC free article] [PubMed] [Google Scholar]

345. Zhuo MQ, Pan YX, Wu K, Xu YH, Luo Z. Characterization and mechanism of phosphoinositide 3‐kinases (PI3Ks) members in insulin‐induced changes of protein metabolism in yellow catfish Pelteobagrus fulvidraco. Gen Comp Endocrinol. 2017;247:34–45. [PubMed] [Google Scholar]

346. Lin Z, Zhou P, von Gise A, etal. Pi3kcb links Hippo‐YAP and PI3K‐AKT signaling pathways to promote cardiomyocyte proliferation and survival. Circ Res. 2015;116(1):35–45. [PMC free article] [PubMed] [Google Scholar]

347. Li J, Gao E, Vite A, etal. Alpha‐catenins control cardiomyocyte proliferation by regulating Yap activity. Circ Res. 2015;116(1):70–9. [PMC free article] [PubMed] [Google Scholar]

348. Lin Z, Guo H, Cao Y, etal. Acetylation of VGLL4 regulates Hippo‐YAP signaling and postnatal cardiac growth. Dev Cell. 2016;39(4):466–479. [PMC free article] [PubMed] [Google Scholar]

349. Khalafalla FG, Greene S, Khan H, etal. P2Y(2) nucleotide receptor prompts human cardiac progenitor cell activation by modulating Hippo signaling. Circ Res. 2017;121(11):1224–1236. [PMC free article] [PubMed] [Google Scholar]

350. Xu P, Feng X, Luan H, etal. Current knowledge on the nucleotide agonists for the P2Y2 receptor. Bioorg Med Chem. 2018;26(2):366–375. [PubMed] [Google Scholar]

351. Sakabe M, Thompson M, Chen N, etal. Inhibition of β1‐AR/Gαs signaling promotes cardiomyocyte proliferation in juvenile mice through activation of RhoA‐YAP axis. Elife. 2022;11. [PMC free article] [PubMed] [Google Scholar]

352. Gan L, Li Q, Pan J, Chen L. Glucocorticoids rapidly promote YAP phosphorylation via the cAMP‐PKA pathway to repress mouse cardiomyocyte proliferative potential. Mol Cell Endocrinol. 2022;548:111615. [PubMed] [Google Scholar]

353. Lan C, Cao N, Chen C, etal. Progesterone, via yes‐associated protein, promotes cardiomyocyte proliferation and cardiac repair. Cell Prolif. 2020;53(11):e12910. [PMC free article] [PubMed] [Google Scholar]

354. Kim DH, Cheon JH. Pathogenesis of inflammatory bowel disease and recent advances in biologic therapies. Immune Netw. 2017;17(1):25–40. [PMC free article] [PubMed] [Google Scholar]

355. Du L, Ha C. Epidemiology and pathogenesis of ulcerative colitis. Gastroenterol Clin North Am. 2020;49(4):643–654. [PubMed] [Google Scholar]

356. Segal JP, LeBlanc JF, Hart AL. Ulcerative colitis: an update. Clin Med (Lond). 2021;21(2):135–139. [PMC free article] [PubMed] [Google Scholar]

357. Gregorieff A, Liu Y, Inanlou MR, Khomchuk Y, Wrana JL. Yap‐dependent reprogramming of Lgr5(+) stem cells drives intestinal regeneration and cancer. Nature. 2015;526(7575):715–718. [PubMed] [Google Scholar]

358. Yui S, Azzolin L, Maimets M, etal. YAP/TAZ‐dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell. 2018;22(1):35–49.e7. [PMC free article] [PubMed] [Google Scholar]

359. Gregorieff A, Wrana JL. Multiple roles for the hippo effector yap in gut regeneration and cancer initiation. Mol Cell Oncol. 2016;3(3):e1143992. [PMC free article] [PubMed] [Google Scholar]

360. Deng F, Peng L, Li Z, etal. YAP triggers the Wnt/β‐catenin signalling pathway and promotes enterocyte self‐renewal, regeneration and tumorigenesis after DSS‐induced injury. Cell Death Dis. 2018;9(2):153. [PMC free article] [PubMed] [Google Scholar]

361. Deng F, Yan J, Lu J, etal. M2 macrophage‐derived exosomal miR‐590‐3p attenuates DSS‐induced mucosal damage and promotes epithelial repair via the LATS1/YAP/β‐catenin signalling axis. J Crohns Colitis. 2021;15(4):665–677. [PubMed] [Google Scholar]

362. Zhou R, Wu Q, Wang M, etal. The protein phosphatase PPM1A dephosphorylates and activates YAP to govern mammalian intestinal and liver regeneration. PLoS Biol. 2021;19(2):e3001122. [PMC free article] [PubMed] [Google Scholar]

363. Liu M, Zhang Z, Sampson L, etal. RHOA GTPase controls YAP‐mediated EREG signaling in small intestinal stem cell maintenance. Stem Cell Rep. 2017;9(6):1961–1975. [PMC free article] [PubMed] [Google Scholar]

364. Deng F, Wu Z, Xu M, Xia P. YAP activates STAT3 signalling to promote colonic epithelial cell proliferation in DSS‐induced colitis and colitis associated cancer. J Inflamm Res. 2022;15:5471–5482. [PMC free article] [PubMed] [Google Scholar]

365. Romera‐Hernández M, Aparicio‐Domingo P, Papazian N, etal. Yap1‐driven intestinal repair is controlled by group 3 innate lymphoid cells. Cell Rep. 2020;30(1):37–45.e3. [PubMed] [Google Scholar]

366. Kim HB, Kim M, Park YS, etal. Prostaglandin E(2) activates YAP and a positive‐signaling loop to promote colon regeneration after colitis but also carcinogenesis in mice. Gastroenterology. 2017;152(3):616–630. [PMC free article] [PubMed] [Google Scholar]

367. Sorrentino G, Perino A, Yildiz E, etal. Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration. Gastroenterology. 2020;159(3):956–968.e8. [PubMed] [Google Scholar]

368. Xu J, Tang Y, Sheng X, etal. Secreted stromal protein ISLR promotes intestinal regeneration by suppressing epithelial Hippo signaling. Embo j. 2020;39(7):e103255. [PMC free article] [PubMed] [Google Scholar]

369. Pibiri M, Simbula G. Role of the Hippo pathway in liver regeneration and repair: recent advances. Inflamm Regen. 2022;42(1):59. [PMC free article] [PubMed] [Google Scholar]

370. Michalopoulos GK. Hepatostat: liver regeneration and normal liver tissue maintenance. Hepatology. 2017;65(4):1384–1392. [PubMed] [Google Scholar]

371. Michalopoulos GK, Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol. 2021;18(1):40–55. [PubMed] [Google Scholar]

372. Lu L, Finegold MJ, Johnson RL. Hippo pathway coactivators Yap and Taz are required to coordinate mammalian liver regeneration. Exp Mol Med. 2018;50(1):e423. [PMC free article] [PubMed] [Google Scholar]

373. Verboven E, Moya IM, Sansores‐Garcia L, etal. Regeneration defects in Yap and Taz mutant mouse livers are caused by bile duct disruption and cholestasis. Gastroenterology. 2021;160(3):847–862. [PubMed] [Google Scholar]

374. Tschuor C, Kachaylo E, Ungethüm U, etal. Yes‐associated protein promotes early hepatocyte cell cycle progression in regenerating liver after tissue loss. FASEB Bioadv. 2019;1(1):51–61. [PMC free article] [PubMed] [Google Scholar]

375. Laschinger M, Wang Y, Holzmann G, etal. The CGRP receptor component RAMP1 links sensory innervation with YAP activity in the regenerating liver. Faseb J. 2020;34(6):8125–8138. [PubMed] [Google Scholar]

376. Konishi T, Schuster RM, Lentsch AB. Proliferation of hepatic stellate cells, mediated by YAP and TAZ, contributes to liver repair and regeneration after liver ischemia‐reperfusion injury. Am J Physiol Gastrointest Liver Physiol. 2018;314(4):G471‐G482. [PMC free article] [PubMed] [Google Scholar]

377. Tharehalli U, Svinarenko M, Kraus JM, etal. YAP activation drives liver regeneration after cholestatic damage induced by Rbpj deletion. Int J Mol Sci. 2018;19(12). [PMC free article] [PubMed] [Google Scholar]

378. Zhou J, Sun C, Yang L, etal. Liver regeneration and ethanol detoxification: a new link in YAP regulation of ALDH1A1 during alcohol‐related hepatocyte damage. Faseb J. 2022;36(4):e22224. [PMC free article] [PubMed] [Google Scholar]

379. Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev. 2017;121:27–42. [PMC free article] [PubMed] [Google Scholar]

380. Oh SH, Swiderska‐Syn M, Jewell ML, Premont RT, Diehl AM. Liver regeneration requires Yap1‐TGFβ‐dependent epithelial‐mesenchymal transition in hepatocytes. J Hepatol. 2018;69(2):359–367. [PMC free article] [PubMed] [Google Scholar]

381. Fan S, Gao Y, Qu A, etal. YAP‐TEAD mediates PPAR α‐induced hepatomegaly and liver regeneration in mice. Hepatology. 2022;75(1):74–88. [PMC free article] [PubMed] [Google Scholar]

382. Gao Y, Fan S, Li H, etal. Constitutive androstane receptor induced‐hepatomegaly and liver regeneration is partially via yes‐associated protein activation. Acta Pharm Sin B. 2021;11(3):727–737. [PMC free article] [PubMed] [Google Scholar]

383. Ju C, Liu C, Yan S, etal. Poly(ADP‐ribose) Polymerase‐1 is required for hepatocyte proliferation and liver regeneration in mice. Biochem Biophys Res Commun. 2019;511(3):531–535. [PubMed] [Google Scholar]

384. Fang Y, Liu C, Shu B, etal. Axis of serotonin ‐pERK‐YAP in liver regeneration. Life Sci. 2018;209:490–497. [PubMed] [Google Scholar]

385. Watkins RD, Buckarma EH, Tomlinson JL, etal. SHP2 inhibition enhances Yes‐associated protein‐mediated liver regeneration in murine partial hepatectomy models. JCI Insight. 2022;7(15). [PMC free article] [PubMed] [Google Scholar]

386. He L, Yuan L, Yu W, etal. A regulation loop between YAP and NR4A1 balances cell proliferation and apoptosis. Cell Rep. 2020;33(3):108284. [PubMed] [Google Scholar]

387. He Y, Li H, He Y, etal. Troglitazone inhibits hepatic oval cell proliferation by inducing cell cycle arrest through Hippo/YAP pathway regulation. Dig Liver Dis. 2022;54(6):791–799. [PubMed] [Google Scholar]

388. Liu C, Cheng X, Chen J, etal. Suppression of YAP/TAZ‐Notch1‐NICD axis by bromodomain and extraterminal protein inhibition impairs liver regeneration. Theranostics. 2019;9(13):3840–3852. [PMC free article] [PubMed] [Google Scholar]

389. Deng Y, Wu A, Li P, etal. Yap1 regulates multiple steps of chondrocyte differentiation during skeletal development and bone repair. Cell Rep. 2016;14(9):2224–2237. [PubMed] [Google Scholar]

390. Yang B, Sun H, Song F, Yu M, Wu Y, Wang J. YAP1 negatively regulates chondrocyte differentiation partly by activating the β‐catenin signaling pathway. Int J Biochem Cell Biol. 2017;87:104–113. [PubMed] [Google Scholar]

391. Li Y, Yang S, Qin L, Yang S. TAZ is required for chondrogenesis and skeletal development. Cell Discov. 2021;7(1):26. [PMC free article] [PubMed] [Google Scholar]

392. Jing X, Yang X, Zhang W, etal. Mechanical loading induces HIF‐1α expression in chondrocytes via YAP. Biotechnol Lett. 2020;42(9):1645–1654. [PubMed] [Google Scholar]

393. Li M, Ning J, Wang J, Yan Q, Zhao K, Jia X. SETD7 regulates chondrocyte differentiation and glycolysis via the Hippo signaling pathway and HIF‑1α. Int J Mol Med. 2021;48(6). [PMC free article] [PubMed] [Google Scholar]

394. Deng Y, Lu J, Li W, etal. Reciprocal inhibition of YAP/TAZ and NF‐κB regulates osteoarthritic cartilage degradation. Nat Commun. 2018;9(1):4564. [PMC free article] [PubMed] [Google Scholar]

395. Gong Y, Li S, Liu R, etal. Inhibition of YAP with siRNA prevents cartilage degradation and ameliorates osteoarthritis development. J Mol Med (Berlin, Germany). 2019;97(1):103–114. [PubMed] [Google Scholar]

396. Wang L, Dong J, Xian CJ. Computational modeling of bone cells and their biomechanical behaviors in responses to mechanical stimuli. Crit Rev Eukaryot Gene Expr. 2019;29(1):51–67. [PubMed] [Google Scholar]

397. Kegelman C, Coulombe J, Jordan K, etal. YAP and TAZ mediate osteocyte perilacunar/canalicular remodeling. J Bone Miner Res. 2020;35(1):196–210. [PMC free article] [PubMed] [Google Scholar]

398. Xiong J, Almeida M, O'Brien C. The YAP/TAZ transcriptional co‐activators have opposing effects at different stages of osteoblast differentiation. Bone. 2018;112:1–9. [PMC free article] [PubMed] [Google Scholar]

399. Zarka M, Etienne F, Bourmaud M, etal. Mechanical loading activates the YAP/TAZ pathway and chemokine expression in the MLO‐Y4 osteocyte‐like cell line. Lab Investig. 2021;101(12):1597–1604. [PubMed] [Google Scholar]

400. Seo E, Basu‐Roy U, Gunaratne P, etal. SOX2 regulates YAP1 to maintain stemness and determine cell fate in the osteo‐adipo lineage. Cell Rep. 2013;3(6):2075–2087. [PMC free article] [PubMed] [Google Scholar]

401. Kaneko K, Ito M, Naoe Y, Lacy‐Hulbert A, Ikeda K. Integrin αv in the mechanical response of osteoblast lineage cells. Biochem Biophys Res Commun. 2014;447(2):352–357. [PMC free article] [PubMed] [Google Scholar]

402. Wang C, Gu W, Sun B, etal. CTHRC1 promotes osteogenic differentiation of periodontal ligament stem cells by regulating TAZ. J Mol Histol. 2017;48(4):311–319. [PubMed] [Google Scholar]

403. Jia L, Zhang Y, Ji Y, etal. YAP balances the osteogenic and adipogenic differentiation of hPDLSCs in vitro partly through the Wnt/β‐catenin signaling pathway. Biochem Biophys Res Commun. 2019;518(1):154–160. [PubMed] [Google Scholar]

404. Lorthongpanich C, Charoenwongpaiboon T, Supakun P, Klaewkla M, Kheolamai P, Issaragrisil S. Fisetin inhibits osteogenic differentiation of mesenchymal stem cells via the inhibition of YAP. Antioxidants (Basel, Switzerland). 2021;10(6). [PMC free article] [PubMed] [Google Scholar]

405. Wei Q, Holle A, Li J, etal. BMP‐2 signaling and mechanotransduction synergize to drive osteogenic differentiation via YAP/TAZ. Adv Sci (Weinheim, Baden‐Wurttemberg, Germany). 2020;7(15):1902931. [PMC free article] [PubMed] [Google Scholar]

406. Zhao L, Guan H, Song C, etal. YAP1 is essential for osteoclastogenesis through a TEADs‐dependent mechanism. Bone. 2018;110:177–186. [PubMed] [Google Scholar]

407. Li S, Li Q, Zhu Y, Hu W. GDF15 induced by compressive force contributes to osteoclast differentiation in human periodontal ligament cells. Exp Cell Res. 2020;387(1):111745. [PubMed] [Google Scholar]

408. Wang J, Xiao Y, Hsu C, etal. Yap and Taz play a crucial role in neural crest‐derived craniofacial development. Development (Cambridge, England). 2016;143(3):504–515. [PMC free article] [PubMed] [Google Scholar]

409. Goodwin A, Chen C, Vo N, Bush J, Klein O. YAP/TAZ regulate elevation and bone formation of the mouse secondary palate. J Dental Res. 2020;99(12):1387–1396. [PMC free article] [PubMed] [Google Scholar]

410. Zhang B, Sun B, Ji Y, etal. Expression and localization of Yap and Taz during development of the mandibular first molar in rats. Biotech Histochem. 2017;92(3):212–221. [PubMed] [Google Scholar]

411. Zhang B, Sun BY, Ji YW, etal. Expression and localization of Yap and Taz during development of the mandibular first molar in rats. Biotech Histochem. 2017;92(3):212–221. [PubMed] [Google Scholar]

412. Yang Y, Wang BK, Chang ML, Wan ZQ, Han GL. Cyclic stretch enhances osteogenic differentiation of human periodontal ligament cells via YAP activation. Biomed Res Int. 2018;2018:2174824. [PMC free article] [PubMed] [Google Scholar]

413. Kwon H, Li L, Jung H. Hippo pathway/Yap regulates primary enamel knot and dental cusp patterning in tooth morphogenesis. Cell Tissue Res. 2015;362(2):447–451. [PubMed] [Google Scholar]

414. Sun B, Wen Y, Wu X, Zhang Y, Qiao X, Xu X. Expression pattern of YAP and TAZ during orthodontic tooth movement in rats. J Mol Histol. 2018;49(2):123–131. [PubMed] [Google Scholar]

415. Barrette AM, Ronk H, Joshi T, etal. Anti‐invasive efficacy and survival benefit of the YAP‐TEAD inhibitor verteporfin in preclinical glioblastoma models. Neuro Oncol. 2022;24(5):694–707. [PMC free article] [PubMed] [Google Scholar]

416. Hasegawa T, Sugihara T, Hoshino Y, etal. Photosensitizer verteporfin inhibits the growth of YAP‐ and TAZ‐dominant gastric cancer cells by suppressing the anti‐apoptotic protein Survivin in a light‐independent manner. Oncol Lett. 2021;22(4):703. [PMC free article] [PubMed] [Google Scholar]

417. Jiao S, Wang H, Shi Z, etal. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell. 2014;25(2):166–180. [PubMed] [Google Scholar]

418. Song S, Xie M, Scott AW, etal. A novel YAP1 inhibitor targets CSC‐enriched radiation‐resistant cells and exerts strong antitumor activity in esophageal adenocarcinoma. Mol Cancer Ther. 2018;17(2):443–454. [PMC free article] [PubMed] [Google Scholar]

YAP/TAZ: Molecular pathway and disease therapy (2024)
Top Articles
Latest Posts
Article information

Author: Laurine Ryan

Last Updated:

Views: 6589

Rating: 4.7 / 5 (57 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Laurine Ryan

Birthday: 1994-12-23

Address: Suite 751 871 Lissette Throughway, West Kittie, NH 41603

Phone: +2366831109631

Job: Sales Producer

Hobby: Creative writing, Motor sports, Do it yourself, Skateboarding, Coffee roasting, Calligraphy, Stand-up comedy

Introduction: My name is Laurine Ryan, I am a adorable, fair, graceful, spotless, gorgeous, homely, cooperative person who loves writing and wants to share my knowledge and understanding with you.